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Abstract

This doctoral dissertation contributes to both model-based and model-free data
interpretation techniques in vibration-based Structural Health Monitoring (SHM). In
the model-based category, a surrogate-based finite element (FE) model updating
algorithm is developed to improve the computational efficiency by replacing the FE
model with Response Surface (RS) polynomial models in the optimization problem of
model calibration. In addition, formulation of the problem in an iterative format in
time domain is proposed to extract more information from measured signals and
compensate for the error present in the regressed RS models. This methodology is
applied to a numerical case study of a steel frame with global nonlinearity. Its
performance in presence of measurement noise is compared with a method based on
sensitivity analysis and it is observed that while having comparable accuracy,
proposed method outperforms the sensitivity-based model updating procedure in terms
of required time. With the assumption of Gaussian measurement noise, it is also
shown that this parameter estimation technique has low sensitivity to the standard
deviation of the measurement noise. This is validated through several parametric
sensitivity studies performed on numerical simulations of nonlinear systems with
single and multiple degrees of freedom. The results show the least sensitivity to
measurement noise level, selected time window for model updating, and location of

the true model parameters in RS regression domain, when vibration frequency of the
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system is outside the frequency bandwidth of the load. Further application of this
method is also presented through a case study of a steel frame with bilinear material
model under seismic loading. The results indicate the robustness of this parameter
estimation technique for different cases of input excitation, measurement noise level,

and true model parameters

In the model-free category, this dissertation presents data-driven damage
identification and localization methods based on two-sample control statistics as well
as damage-sensitive features to be extracted from single- and multivariate regression
models. For this purpose, sequential normalized likelihood ratio test and two-sample t-
test are adopted to detect the change in two families of damage features based on the
coefficients of four different linear regression models. The performance of
combinations of these damage features, regression models and control statistics are
compared through a scaled two-bay steel frame instrumented with a dense sensor
network and excited by impact loading. It is shown that the presented methodologies
are successful in detecting the timing and location of the structural damage, while
having acceptable false detection quality. In addition, it is observed that incorporating
multiple mathematical models, damage-sensitive features and change detection tests
improve the overall performance of these model-free vibration-based structural

damage detection procedures.

In order to extend the scalability of the presented data-driven damage detection
methods, a compressed sensing damage localization algorithm is also proposed. The

objective is accurate damage localization in a structural component instrumented with

2
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a dense sensor network, by processing data only from a subset of sensors. In this
method, first a set of sensors from the network are randomly sampled. Measurements
from these sampled sensors are processed to extract damage sensitive features. These
features undergo statistical change point analysis to establish a new boundary for a
local search of damage location. As the local search proceeds, probability of the
damage location is estimated through a Bayesian procedure with a bivariate Gaussian
likelihood model. The decision boundary and the posterior probability of the damage
location are updated as new sensors are added to processing subset and more
information about location of damage becomes available. This procedure is continued
until enough evidence is collected to infer about damage location. Performance of this
method is evaluated using a FE model of a cracked gusset plate connection. Pre- and

post-damage strain distributions in the plate are used for damage diagnosis.

Lastly, through study of potential causes of damage to the Washington
Monument during the 2011 Virginia earthquake, this dissertation demonstrates the role
that SHM techniques plays in improving the credibility of damage assessment and
fragility analysis of the constructed structures. An FE model of the Washington
Monument is developed and updated based on the dynamic characteristics of the
structure identified through ambient vibration measurement. The calibrated model is
used to study the behavior of the Monument during 2011 Virginia earthquake. This FE
model is then modified to limit the tensile capacity of the grout material and
previously cracked sections to investigate the initiation and propagation of cracking in

several futuristic earthquake scenarios. The nonlinear FE model is subjected to two
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ensembles of site-compatible ground motions representing different seismic hazard
levels for the Washington Monument, and occurrence probability of several structural

and non-structural damage states is investigated.
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Chapter 1

Introduction

In-service structural systems are inevitably prone to deterioration and damage with
use, time, and in many cases due to extreme events happening throughout their
lifetime. Therefore, Structural Health Monitoring (SHM) research community aims to
develop methodologies that allow fast and easy - and ultimately automated - condition
assessment of structures in order to maximize the probability of detection of structural
damage in its early stages and minimize the restoration and maintenance costs. For
this purpose several non-destructive techniques (Trimm 2003) have been established
over past decades ranging from visual inspection (Balageas 2006) to more advanced
methods such as ultrasonic testing (Yehia et al. 2007), acoustic emission (Carpinteri et
al. 2011), and vibration-based methods (Doebling et al. 1998). In monitoring of civil
structures and infrastructure systems, vibration-based methods have attained

significant attention in recent decades. The reason is manifold, to mention a few:

- unlike other methods, vibration-based SHM techniques are not restricted to
have direct access to the location of damage (Trimm 2003)
- with advancement in the sensing technology, vibration measurement of large-

scale structure can be completed with a reasonable budget (Kim et al. 2007)
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- these methods seem more promising for development of a general automated

SHM framework (Magalhaes et al. 2012)

Vibration-based SHM includes instrumentation, response measurement, data
processing, and interpretation. Key components of SHM techniques in processing the
monitoring vibration data fall into three categories: (1) identification of dynamic
characteristics of the monitored structures, (2) detection, localization, and
quantification of the damage in the system, and (3) updating the finite element (FE)

simulations of the structures based on their measured responses.

While two or more of these methods commonly contribute in monitoring projects,
each of these components offer unique benefits in understanding the structural
characteristics and behavior. Therefore, research in all three aspects is ongoing to
develop methodologies that are efficient and applicable to a wide range of structural
systems. FE calibration methods attracted significant attention in the recent decades,
mainly because having a FE model calibrated with reference to the actual structure,
enables a variety of applications such as futuristic reliability study, assessment of
retrofit alternatives, and designing structural control strategies. Moreover, parameter
estimation through model calibration serves as the basis for many model-based
damage detection algorithms which aim to assess the structural damage in a more

objective way than non-parametric damage detection procedures.

Structural damage detection is one of the main goals of SHM projects. Over last

decades numerous vibration-based algorithms have been proposed to fulfill this goal.
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These techniques can be classified based on their damage indicators (local/global), or
their approaches (physics-based or data-driven). While physics-based approaches
seem more appropriate for in-depth investigation of behavior of a particular structure,
low computational demand associated with the data-driven approaches make them
more suitable for developing automated damage localization frameworks and dealing

with ever-growing volumes of monitoring data.

1.1. Scope of the research

This doctoral dissertation contributes in two of the main components of vibration-
based SHM data interpretation methods: FE model updating and data-driven damage

detection.

A surrogate-based FE model updating algorithm is developed to improve the
efficiency of model updating techniques. While this algorithm is developed to update
non-linear FE models in time domain, the overall framework is applicable to structures
with linear or non-linear behavior. Efficiency of this method is compared with
sensitivity-based FE model updating. Moreover, robustness of the algorithm with
respect to the frequency content of the input excitation and noise in the measurement
is studied. Furthermore, application of this method in updating the FE model of the

Washington Monument is demonstrated.

Second contribution of this dissertation is in model-free damage detection
techniques, specifically in establishing and comparing the effectiveness of several

data-driven damage indicators and statistical tests for SHM applications. The
7
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comparison is performed on a scaled steel frame tested in the laboratory of Advanced
Technology for Large Structural Systems (ATLSS) at Lehigh University. In addition,
a compressed sensing damage detection algorithm is proposed that process minimum
amount of data from a dense sensor network to accurately localize the structural
damage. Application of this compressed damage localization technique for single and
multiple damage cases are demonstrated through FE simulations of a steel gusset plate

connection.

Lastly, through study of potential causes of damage to the Washington Monument
during the 2011 Virginia earthquake, this dissertation demonstrates the role that SHM
techniques plays in improving the credibility of damage assessment and fragility

analysis of the constructed structures.

1.2. Organization of the dissertation

Chapter 2 of this dissertation presents a review of the existing literature on finite

element model (FEM) updating and damage detection.

Chapter 3 describes the developed algorithm for non-linear model updating in
time-domain. Performance of this algorithm is validated numerically through an

example of a scaled steel frame.

Chapter 4 investigates the robustness of the model updating methodology
presented in chapter 3 with respect to input excitation and measurement noise. For this

purpose, several sensitivity studies were performed on structures with single and
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multiple degrees of freedom. Robustness estimation is investigated in scenarios where

structure is excited with harmonic as well as seismic loading.

Chapter 5 describes a study conducted to investigate the potential causes of

damage to the Washington Monument following the 2011 Virginia earthquake.

Chapter 6 describes contributions of this research in the model-free methods in

structural damage detection.

Chapter 7 presents the proposed damage detection methodology with compact

sensing approach.

Chapter 8 concludes the dissertation with a summary of the presented research,

conclusions, and future work.
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Chapter 2

Literature Review

Over recent decades numerous vibration-based structural damage detection
techniques have been proposed that can be classified based on the features they
interpret as damage indicators and/or their approaches (physics-based or data-driven).
In physics-based (also called model-based) procedures, selected parameters of an FEM
of the system are updated with respect to the measured responses to identify the
existence and extent of the structural damage (Jaishi and Ren (2007); Kim and
Kawatani (2008);Weber and Paultre (2010); Moaveni et al. (2012)). On the other
hand, data-driven (also called model-free approaches) use the measured responses
directly in numerical algorithms so that there is no need for prior information about
the structure’s properties or suspected location of damage (Bodeux and Golinval

(2003); Lu and Gao (2005); Deraemaeker and Preumont (2006); Kumar et al. (2012)).

There are advantages and disadvantages about each category of methods. The
model-based methods are usually more laborious to implement and require certain a
priori knowledge of structural properties, and location of damage; however, these
methods are more objective in the interpretation of their results. In addition, the
calibrated model can be used for design of repair scenarios or estimating the remaining

life of the damaged structure. The main advantage of the second group is their

10
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efficiency, and that they can be readily applied to measured signals without any prior
information. This property has made them more suitable in analyzing the data from
dense sensor networks to identify relatively localized damage; a scenario in which a
model-based algorithm can hardly perform successfully within reasonable
computational effort. Moreover, the application of the data-driven methods as a
general automated damage detection platform is more promising. One the other hand,
these model-free techniques would be ineffective without statistical analyses to

determine a change threshold for the extracted features.

Another classification for SHM damage detection methods is based on the features
that are used to monitor the condition of the structures. Modal parameters (vibration
frequencies, mode shapes, mode shape curvatures, etc.) have been widely used as
damage sensitive features in the SHM field (West (1984); Pandey and Biswas (1995);
Doebling et al. (1998)). However, since these damage indicators are global in nature,
they are generally unable to detect local damages (Farrar et al. (1994)). Additionally,
they require measurement data with high signal to noise ratio as well as moderate
damage levels to identify the damage in the system (Farrar et al. (1994); Alvandi and
Cremona (2006)). Research is still ongoing to extract features from structural
responses that are sensitive enough to local and minor damage, yet robust to the
common changes in the structural responses and measurement noise. Examples of
such damage indicators are statistical features generated from sensor networks data
(Nair et al. (2006); Figueiredo et al. (2011); Kiremidjian et al. (2011); Yao and Pakzad

(2013); Dorvash et al. (2013a)). Such features seem more promising for applications

11
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on in-service structures, as with the recent advancement in sensing technology,
literature reports numerous successful implementations of sensor networks on large-
scale structures (for example, Lynch et al. (2006); Cruz and Salgado (2009); Pakzad

(2010); Jang et al. (2011); Labuz et al. (2011); Hu et al. (2013))

The contribution of this dissertation is in both categories of model-based and
model-free methods in SHM. In the model-based category, a surrogate-based model
updating technique is proposed for efficient calibration of non-linear FEMs, and in the
second category, model-free damage identification and localization methods based on
two-sample control statistics are presented. In addition, these data-driven techniques
are also extended to consider compressed damage localization, when the system is

monitored using a dense sensor network.

Next sections review the related literature in the area of non-linear FEM updating

and data-driven damage localization.

2.1. Finite Element Model Updating

Finite element model updating is an inverse problem of modifying the uncertain
parameters of a FE model in order to improve the correlation between certain
analytical response features and their experimental counterparts. Over recent decades
several computational procedures have been developed to update parameters of
analytical models based on experimental results. These procedures can be categorized
according to their domain of applicability. In linear model updating experimentally

identified modal quantities (mainly natural frequencies and mode shapes) are used as
12
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reference features to update finite element models of structures (Bell et al. 2007;
Zimmerman and Lynch 2009; Weber and Paultre 2010; Moaveni and Behmanesh
2012; Moaveni et al. 2012). This technique is widely used especially with
improvement of sensing technology and rapid deployment of wireless sensor networks
in recent decades which made it more convenient to obtain valuable information about
behavior of in-service structures (Lynch et al. 2003; Lynch and Kenneth 2006 ;
Whelan and Janoyan 2009; Zaurin and Catbas 2010 ; Jang et al. 2011; Dorvash et al.
2012). Direct and iterative methods for linear model updating are well-documented in
the literature (Imregun and Visser 1991; Friswell and Mottershead 1995). In direct
methods as the elements of the structural matrices are updated in one step, the
structural connectivity may be violated and make it difficult to interpret the updated
matrices (Baruch 1978; Baruch 1984; Berman and Nagy 1983; Friswell et al. 1998;
Yang and Chen 2009). Therefore, iterative model updating methods which directly
modify the preselected parameters of FE models are more popular (Brownjohn and
Xia 2000; Zhang et al. 2000; Brownjohn et al. 2001; Jaishi and Ren 2006; Hua et al.
2009; Wang et al. 2010; Ribeirio et al. 2012; Zona et al. 2012). These techniques are
mainly based on the sensitivity analysis and linearization of the generally non-linear
relationship between measured responses and the uncertain model parameters
(Mottershead et al. 2010). Such methods are generally computationally intensive, and
may cause convergence difficulties since they are based on iterative determination of
local gradients (Ren and Chen 2010). Moreover, in the presence of any non-linearity
in the structure the procedures based on modal information fail to yield the parameters

associated with non-linear behavior of the model and other measures are required to

13
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update the model. Silva et al. (2009) performed a comparison between different
metrics for use in non-linear model updating using vibration test data and concluded
that such metrics are effective in updating the structural models with local and weak
non-linearities. Therefore, our objective is to present a procedure to overcome these

problems in updating non-linear systems.

One of the proposed approaches to decrease the computational effort in model
updating problems is to replace the FE model with a mathematical expression which
approximates the relationship between pre-selected inputs and output of the FE
models. This approach was successfully implemented in the structural optimization
problems where function approximations reduce the cost of function evaluations to
find the global optimum of the problem (Roux et al. 1998; Heinonen and Pajunen
2011). In FEM updating, the parameters of the surrogate model are directly modified
with respect to the measured data. One of the commonly used surrogate models are
polynomial functions constructed based on Response Surface (RS) methodology
which is originally a statistical method for exploring the relation of explanatory
variables of a system and its responses. To find a mathematical model to represent this
relationship, there are several subsets that can be chosen from the entire design space.
Techniques of design of experiments (DOE) can be employed to provide specific
designs consisting of limited number of points in the whole design space with
reasonable distribution under the assurance of modeling accuracy (Box and Draper
1987; Montgomery 2001). This method is promising in modifying FE model

parameters. Guo and Zhang (2004) and Ren and Chen (2010) present studies of

14
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comparison between RS-based and Sensitivity-based linear model updating
techniques. They found that while the RS-based method gives likewise accurate
predictions, it requires far fewer number of FE analyses and the rate of convergence is
significantly higher. Zhang et al. (2005) concluded that RS modeling considerably
decreases the computational effort regarding implementation of genetic algorithm for
model updating. The results of application of this procedure on a numerical case study
revealed that unlike the sensitivity-based method, RS-based genetic algorithm model
updating successfully reached the global optima. Marwala (2004, 2010) present a
comparison of the computational expense and accuracy of RS based FE model
updating with methods using evolutionary optimization algorithms on full FE model
for updating. This study implements a genetic algorithm to optimize multilayer neural-
network based RS models in two case studies of a linear beam and a linear
unsymmetrical H-shaped structure. Comparison of the results concluded that the
proposed method requires the least computational load, while the predicted modal
properties are of the same order of accuracy as those obtained by simulated annealing

and genetic algorithm.

While in the previous studies, designs such as central composite and d-optimal
were used to generate the input levels for RS modeling, Ren et al. (2011)
demonstrated that for complex structures with large number of uncertain parameters

uniform design economizes the computation of constructing RS models.

The application of RS-based model updating has been also studied for damage

detection. Cundy (2002) applied this method on damage identification of a simulated
15
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mass—spring—damper system and a tested cantilever beam in the laboratory. The study
found that damage identification using RS modeling is successful in locating damage
and quantifying its severity with some degree of accuracy and robustness to the
experimental variability (i.e. noise). Fang and Perera (2009) presented a systematic
structural damage identification technique based on RS methodology comprising four
sequential steps of feature selection, parameter screening, primary RS modeling and

updating of the intact and damaged structures.

There are few examples of application of RS-based model updating in the
literature for structures with non-linearities. Schultze et al. (2001) introduced a new
approach called feature extraction for parameter selection in model updating problems
based on 2X factorial design. This approach was used to select the significant
parameters to update a model consisting of a cylindrical steel impactor and a foam
layer assembled on a mounting plate attached to a drop table under impact on a
concrete floor. Quadratic RS models were then used to estimate the response features
to update the selected parameters of the model. Zhang and Guo (2007) proposed a
model updating procedure based on Principal Component Decomposition and RS
method to update a frame model with thin wall components showing strain-rate-

dependence non-linearity under impact test.

2.2. Data-driven Structural Damage Detection

Another contribution of this dissertation is in presenting model-free (i.e. Data-

driven) damage identification and localization methods based on two-sample control
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statistics. In such data-driven methods, first time series analysis or signal processing
techniques are employed to extract damage sensitive feature from measured signals.
Choosing an effective damage feature is crucial for successful damage detection.
These features can be used to establish control statistics which were originally used to
monitor a change in a process. Once a significant change is encountered in the process
(here the damage indicators), the control statistic can capture this change with the use
of a threshold value. Once the threshold value is crossed, the process can be deemed
out of control. These charts can be used to compare the choice of damage sensitive
features in damage detection schemes because different features will have different

sensitivities and produce different damage detection and localization results.

There are many different parameters that have been used by researchers as damage
sensitive features for model-free damage detection. In order to find and use dynamic
characteristics of a structure as damage features, Huang (2001) proposed a procedure
that uses the multivariate AR model for numerical simulations of a six-story shear
building subjected to white-noise and low-pass filtered white-noise input, while
simulated acceleration and velocity responses were used in separate scenarios to study
the effect of signal type. Similarly, He and De Roeck (1997) uses multivariate
autoregressive models to find the modal parameters of a water transmission tower
from measured acceleration responses during ambient vibration. Furthermore, Hung et
al. (2004) identifies modal parameters from measured input and output data using a
vector backward autoregressive with exogenous model. This method was

experimentally validated using measured acceleration responses of a five-story scaled
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steel frame under a shake table test. Zheng and Mita (2007) fit Auto regressive moving
average (ARMA) models to the time series of acceleration responses of the structure
and use the distance between the ARMA models to detect the existence of the damage,
which is consequently localized by minimizing the cross-correlation of multiple
excitations through pre-whitening filtering. Gul and Catbas (2011) create ARX models
based on acceleration responses of different sensor clusters of the healthy structure,
these models are then used for predicting the data from the damaged structure, while
the difference between the fit ratios are used as damage sensitive features.
Effectiveness of autoregressive models are investigated in several other studies by
using the time history of acceleration responses of the system to generate damage
indicators (for example, Fugate et al. (2001); Nair et al. (2006); Zheng and Mita
(2009); De Lautour and Omenzetter (2010) ; Dorvash et al. (2013b)); however, there
are also successful applications of these models for damage localization in the
literature which use time histories of measured strain signals (Sohn et al. (2001); Noh
et al. (2009); Dorvash et al. (2013c)). While some of these studies use data from real-
world systems for validation (Sohn et al. (2001); Gul and Catbas (2011)), most of the
proposed damage detection techniques are verified through laboratory testing of
specimens with different levels of complexity from retrofitted reinforced concrete
column (Fugate et al. 2001) to four—story two-bay by two-bay steel braced frame

(Nair et al. 2006).

After extracting the damage features from the signals measured over time,

significance of variation in the features should be examined to distinguish any change
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that is outside the range of random variation of measurements. For this purpose, there
are several types of control statistics that can be used for change point detection
(Amiri and Allahyari 2011). These statistics can be used to detect a single change or
multiple changes in the mean or variance of the feature vectors. One of the first charts
generated, the standard univariate Shewhart X control chart, was introduced in 1924
by Walter Shewhart to detect a change in the mean of a population (Wilcox 2003).
Since then, control schemes have found widespread application in different disciplines
and become more effective. Fugate et al. (2001) is an example of application of
Shewhart control chart in damage detection of a concrete bridge column. One major
flaw in using univariate control statistics is that they can only monitor one variable at a
time. If one were to observe a set of quality characteristics that have components with
the potential to be interrelated, the univariate control schemes become obsolete.
Although it could be argued that univariate control charts could be applied
independently to each component of the multivariate data, misleading results may be
obtained in some cases due to failure to allow for the inherent relationship among the
components of the multivariate data (Zamba and Hawkins 2006). Therefore, in this
research muliti-dimensional damage features are condensed into a single feature to

develop univariate control statistics.

One control chart used in this study is a Likelihood Ratio Test (LRT) of which
there are many types. Srivastava and Worsley (1986) propose a form of the LRT that
is more effective in detecting a shift involving only the mean vector, while other

researchers present improved LRT-based statistical methods capable of detecting
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shifts in the mean and variance of a vector of observations (Sullivan and Woodall
(1996); Hawkins and Zamba (2005); Zhang et al. (2010); Zhou et al. (2010)). Zou et
al. (2006) presents a control chart based on change point models for monitoring the
intercept, slope or standard deviation of the linear profiles and names the proposed
method the standardized likelihood ratio test. The literature related to application of
such change point techniques for structural damage detection is scarce (EI-Ouafi
Bahlous et al. 2007). This dissertation uses the Normalized Likelihood Ratio Test
(NLRT) from Sullivan and Woodall (1996), which has not been used in SHM
schemes. The details of this method are presented in the next section.

Another change point analysis used in the present research is based on a two-
sample t-test; a form of statistical hypothesis testing to distinguish significant
differences in the means of two sets of data. Montegomery and Loftis (1987) show the
applicability of this t-test for detecting trends in water quality variables. Additionally,
Hawkins and Zamba (2005) use the t-test in conjunction with the generalized
likelihood ratio test in order to distinguish between a shift in the mean and the
variance in a gold mining quality control example. In effect, there are many different
variations of such statistical tests that can be used based on different initial
assumptions about the mean and variance of the data. For example, the Satterthwaite-
Welch method (Welch 1974) is used with the assumption that the variance of the two
populations is unknown and unequal. However, in this research, the Student’s t-test is
used in which it is assumed that the variance of the two populations is unknown but

equal.
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Chapter 3

Generalized Response Surface Model
Updating Using Time Domain Data

The objective of this chapter is to present a procedure to construct accurate yet less
computationally demanding surrogate models to replace FE models in non-linear
model updating problems. For this purpose, RS model updating is used and extended
into non-linear FE updating through time domain data. FE model updating using RS
modelling consists of two main steps: first, a polynomial model is constructed based
on a finite number of FE runs. Then, the objective function in the form of the residuals
of measured responses and corresponding RS models is optimized. However, the
solution of optimization procedure is not reliable unless the RS model regressed in the
first step is able to predict the response of FE model well. Therefore, the main issue
regarding construction of RS models is how to create accurate surrogate models. The
number of levels for each parameter and also the order of RS polynomial models
result in models with different accuracy. Consequently, the procedure for finding an
appropriate design to build the surrogate model in regard with the nature of problem
requires a number of trials and errors with different designs and subset models. Such
procedures increase the computational cost associated with RS modeling, as the cost

of a RS model depends on the total number of FE runs required to achieve the desired

21

www.manaraa.com



accuracy. Several design families are available such as full factorial, fractional
factorial, central composite design, Box Behnken design, etc (Montgomery 2001). Full
factorial design consists of all possible combinations of levels of parameters. Other
designs are mainly based on a subset of design points sampled from a full factorial
design. Figure 3.1 displays the design points of three different designs for a problem
with three model parameters. This figure shows that full factorial, Box Behnken and
central composite designs have 27, 15 and 20 design points respectively. It is seen that
while full factorial design contains more design points, it is beneficial in uniformly
sampling from the corners of the domain as well as the central area. In this study a
systematic procedure is proposed to sample the design points in the domain of model
parameters which adopt a full factorial design with minimum number of levels for
each parameter followed by adding design points to the domain when required after

evaluation of the regressed RS models.

sl o 7 7
® . ® & 3
Feolsw ¥,
(a) (b) (:)

Figure 3.1. Full factorial (a), Box Behnken (b) and central composite (c) design for a model with
three parameters

Another issue appears in using pre-defined designs while dealing with the bounds

of the variables in the optimization problem. It should be noted that the regressed RS
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model can only replace the FE model in the joint region of the input data used in the
regression (Montgomery et al. 2004). In many of the experimental designs, not all
levels of the parameters are present in the design; therefore, updating the RS model in
the original regions of model parameters can cause extrapolation beyond the
regression domain. Figure 3.2 illustrates the original and joint region of parameters for
a model with two parameters. The figure shows that while both points A and B are in
the area made by original regions of model parameters, point A is outside of the
regression domain. To prevent this phenomenon, called the hidden extrapolation,
another constraint should be imposed on the optimization problem to specify the

infeasibility of the solution outside the joint region of the variables.
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Figure 3.2. An example of extrapolation in multiple regression
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In this chapter, a procedure is proposed for designing the levels of input
parameters and constructing the RS model. Since the proposed procedure is based on
the full factorial design of parameters, it addresses the hidden extrapolation problem
by expanding the joint region of parameters into a set containing the original regions
of all the parameters. This method results in a RS model capable of generating the
response of FE model analysis in a specific domain of input variables. Furthermore, it
is also proposed to formulate and solve the optimization problem of model
modification through time history of responses iteratively. This approach is beneficial
in extracting more information from the measured experimental signals as opposed to
the traditional approaches in which the whole measured signals are summarized into
one or more response features. Another advantage of this approach is that it is not
limited to the type of model behavior or analysis. It can be applied to linear or non-

linear models under static or dynamic analysis.

3.1. Generalized Response Surface Model Updating

To provide the model updating process with more information from measured
data, it is proposed to update FE models through time history of measured responses.
The experimental input force is used to generate the equivalent responses of FE model
at different levels of the model parameters. In every time step a RS model is

constructed to produce the corresponding response of the FE model at that time step

RS, = h,(©) (3.1)
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Eq. (3.1) denotes the generalized RS model at the I" time step, where h is the
polynomial surrogate model in that time step and © represents a vector of model
parameters selected for modification. By completing this process for every response,
an objective function is formulated to minimize a function of residuals of RS-based
and experimental response features at every time step. Eq. (3.2) represents this
minimization problem which should be solved inside the domain of model
parameters.

min f,(H,(0),X,,)

) (3.2)

In Eq. 3.2) H, and Y, , are vectors containing all the surrogate models and

corresponding experimental responses at the I" time step.

Prior to RS modeling, the appropriate design and model order should be found so
that the regressed RS models are accurate at the associated time steps. The
computational procedure proposed here to construct accurate RS models and update
them in time domain is called Generalized Response Surface Model Updating
(GRSMU) (Shahidi and Pakzad 2014a). This method is categorized into three parts:
model construction, evaluation, and optimization. The next subsections describe these

three steps in detail.
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3.2. RS Model Construction

The steps of model construction and evaluation are completed for each time step to
find appropriate levels and order of the RS models. To start RS modeling, an initial
region for the pre-selected uncertain parameters of the FE model should be chosen.
This region, in which the FE model is replaced by the RS model, is called RS domain.
To regress the polynomial RS models, a number of points are sampled in the RS

domain based on full factorial design of the model parameters. The regression model

in matrix notation for the /* time step is given by

v =XB +€
1 I 1 (3.3)
where X =[x,,x,,...,X, ]
In Eq. (3.3) y,is nx1 vector of observations at the I" time step of the history of
response y and x, =g(6,,0,,..,6,)=[ x;, x, .. x,]is 1X(k+1) row vector
mapped to the i" design point by vector-valued functiong . (8,,6 6.) denotes

i22°°°> Yim

the domain of g as mx1vector of the updating parameters and x;in general is a

polynomial function of one of the updating parameters at the i" design point. [ is

(k+1)x1 vector of regression coefficients and & is nx1 vector of random errors

corresponding to the I"time step. Parameters m, n and k are the number of the
updating parameters, the design points in the RS domain and the terms included in the

RS models, respectively.
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The RS model construction starts with a full factorial design with three levels for
each parameter. FE model with the parameters of each design point is analyzed

repeatedly to generate y, vector in Eq. (3.3) which is the vector of FE model responses

corresponding to the experimental ones at the lthstep of the time history of y . The

regression begins with including linear terms of the updating parameters in the RS

models. The regressed RS model associated with the I" time step approximates the

response of the FE model at that time step for any points inside the RS domain

; 3.4
RS!(gon‘goz seees ‘90m) = xoﬁ/ ( )

In Eq. 3.4), x,=g(8,.6,,....6,,)=[1 x, .. x,]1s the vector of polynomial
terms included in the RS model at a point inside the RS domain with coordinates
(8,16, 6,,). B is the least square estimator of the regression coefficients at the /"

time step (Montgomery et al. 2004; Kariya and Karuta 2004; Johnson and
Bhattacharyya 2009). The regressed RS model prior to replacing the FE model should
be evaluated in terms of adequacy of the fit and predictability of the response with

respect to the new data.
3.3. RS Model Evaluation

One of the objectives of GRSMU 1is to find polynomial models capable of
approximating the FE model responses with good accuracy while having minimum
design points and model order. Therefore, model construction begins with regressing

linear RS models onto a design space containing three levels for each parameter and
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the performance of the regressed models are checked. If the RS models are not
accurate enough to substitute the FE model throughout the entire time history, the

sampled design points and model order will be changed.

Initially the performance of the RS models is checked at the design points. For this
purpose ¢, = Xf3, - y, the residuals of the RS and FE models at the I" time step is

calculated. Large residuals indicate that the regression is not successful at the design

points.

The overall adequacy of the RS models can be further evaluated by adjusted R?
statistics. This parameter is used to measure the effect of adding new variables to the
model. As more terms are added to the model, unadjusted R* always increases
regardless of the degree of the contribution of the additional variables. In contrast,
adjusted R? will only increase by adding a variable to the model if the addition of that
variable adds to the explanatory power of the regression model (Montgomery et al.
2004). Use of such statistics is common in validation of the regressed polynomial RS
models in FE model updating (Zhang and Gue (2004, 2007); Fang and Perera 2009;

Ren and Chen 2010; and Ren et al. 2011). Eq. (3.5) gives R2; statistics for the RS

model regressed at the I"time step of the analysis.

SSy.. (n—k=1)
SS., (n=1)

Rl =1- (3.5)

2 A ( fl- Vi )2
Where SSRcsl = leyl _ﬂlTXTXﬂI and SSTZ = leyl ——zl_;l !
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In Eq. (3.5) SS;.,and SS,, are residual and total sum of squares in the I" time
step. SS,, measures the variation in the response of the FE model about the mean

value and SS,_,indicates the variation in the response that the regressed RS model

Res

fails to explain. Since in Eq. (3.5) SS,, /(n—1)is constant regardless of how many

variables were included in the model, R?,qji increases if the additional variables reduce

the term SS,., /(n—k—1). If R%gj is close to one, it implies a perfect regression.

Therefore, when R?,q is much smaller than one, the RS model is not accurate in
estimating the FE responses at the design points. After completing R%.j calculation
through the time domain history, if the regressed RS models are not fitted well to the
design points, higher order terms of the model parameters should be added to the RS

models and the model evaluation repeated.

After finding the appropriate model order, the prediction quality of the RS models
should be checked. For this purpose, residuals are calculated at points that did not
contribute in the regression. These points, which are called intermediate points, are
sampled from RS domain in different sets. Each set represents the intermediate levels
for one parameter. To sample a set of new points corresponding to a parameter, one of
the original data points is replicated, and then the selected parameter is replaced by the
average of one pair of its original levels. Intermediate points which result in larger
residuals than the original design points indicate that although the RS model has been
fitted well to the original data, it cannot predict the FE responses for new points.

Therefore, the design of levels of parameters should become finer. As the same design
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and model order is used throughout the entire time history, the maximum normalized
residuals are compared at original and intermediate levels all through the time history.
Since the intermediate design points of each parameter are generated with the constant
values for other parameters in that set, the decision of adding more levels to the design
is made for each parameter separately and the design space will not get populated

blindly.

By repeating this procedure, the appropriate RS model with high quality in
regression and prediction is constructed for every time step of the data. This procedure
is completed for every response feature. It should be noted that by implementing this
algorithm, the RS models of all the response features at all the time steps can be

constructed and evaluated simultaneously.

3.4. RS Model Optimization

Iterative model construction and evaluation results in construction of an accurate
RS model for the measured response in every time step. The optimization problem is,

then, formulated and solved at every time step leading to histograms of the updated

parameters. Eq. (3.6) formulates the optimization problem corresponding to the I"time

step subjected to the constraints regarding the bounds of parameters in RS domain.

N s RS, (9 59 5""9m)_yex i
min .f} :\/zi—l( — p])z i :1,2,...,S
gj yexpil (3.6)
s.t. 6,<6,<6, Jj=L2,..,m
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In Eq. (3.6) RS,(6,,6,,...,6,) denotes the RS model built for the I" time step and

the i"response feature and Vexpir 18 the i"response measured at the [” time step. By

formulating the FE model updating in this explicit format, the problem can be solved

using any optimization algorithm for non-linear constrained systems.

Figure 3.3 presents GRSMU in a flowchart. RS model construction and evaluation
are completed in the time domain to find the proper design and model order. Then the
accurate RS models are regressed and the optimization problem is solved for every
time step. The optimization step can be repeated in a smaller region for model
parameters based on the results of the first round of minimization. Using the design
and polynomial functions established in the first cycle, only the following steps are
needed: (1) generate the FE responses for new levels; (2) fit the new RS models
through the time history; and (3) optimize the new objective function iteratively.
These steps are illustrated by the highlighted blocks in Figure 3.3. The procedure can
be repeated until the variation of updated parameters falls within the desired threshold.
When the analysis is static, the steps of model construction and evaluation are
completed once, and the optimization step is done through the time history of the
measured data. It should be noted that shrinkage of the RS domain is an extension to
the optimization step to achieve more accurate estimates for the updated parameters.
To avoid inefficient computations, this extension should be performed in cases that the
updated parameters are not accurate enough. This can be assessed by using the

statistical inferences drawn from the histograms of the updated parameters as input to
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the finite element model and investigating the correlation of the corresponding

responses of the model with the measured results.
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Figure 3.3. Methodology for GRSMU
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3.5. Validation of the Proposed Model Updating Procedure

Several studies on linear FE model updating based on RS models established
numerical validation studies on simple structures such as a simply supported or
continues beams (Ren and Chen 2010; Ren et al. 2011; and Deng and Cai 2010). They
mainly verified the proposed methods for one set of true model parameters, which is
assumed to be around the center of the pre-selected RS domain where the RS model’s
prediction is more accurate than other points in this domain. In this study a simulated
numerical case study of a steel frame with bilinear behavior was chosen to validate
GRSMU. Since in the general framework of RS modeling the full FE model is
replaced with the surrogate RS models, complexity of the structure primarily only
adds to the computational cost of the FE runs, but does not change the fundamental
principles of the formulation of the problem. As the location of true model parameters
in the RS domain is always unknown in the inverse problem of model updating,
different cases for the initial domain of the model parameters are assumed to evaluate
the performance of GRSMU in updating the selected parameters. Details of the
simulated case study along with the results of the updating procedures are presented in

the following subsections.

3.5.1. Non-linear steel frame

The case study presented here is a steel frame with non-linear material properties
under dynamic loading. The frame consists of one span with overall length of 228.6

cm (7’ 6”) supported by columns that are 83.8 cm (2’ 9”) long. The cross section of
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the beam and column members is uniform hollow 5.08 cm (2) tube, with 0.21 cm
(0.083”) wall thickness. The column supports are fixed and the frame is considered a
“plane frame” which constrains out-of-plane and torsional degrees of freedom. The
steel has bilinear behavior with the yield stress of 344.8 MPa (50 ksi). Modulus of
elasticity (£) and post yielding stiffness ratio of steel (b) were chosen as the updating
parameters. To simulate the experimental data, these parameters were set to 217.2 GPa
(31500 ksi), and 0.125 for £ and b respectively. The loading is a concentrated
harmonic lateral load with amplitude 22.2 kN (5 kips) and 5 sec period, applied at the
beam column joint. The amplitude of the load is selected so that under lateral loading
the stress in the columns and beam exceeds the yield stress. To update the selected
parameters, simulated time histories of displacement at two locations on the frame
were assumed as the experimental data. Figure 3.4 shows the configuration of the steel

frame, loading and the responses used in the updating procedure.

””l)x o

Figure 3.4. Configuration of the non-linear steel frame
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3.5.2. Simulated model

A 2-dimensional mathematical model was developed by Opensees (Mazzoni et al.
2009) software. The model consists of 8 nodes and 7 elements dividing beam and
columns members into two and three segments, respectively. Each node has three
degrees of freedom, ux, uy and 6, which allows for translation and rotation in xy plane.
Elements were modeled as nonlinearBeamColumn having Steel01 uniaxialMaterial
properties to construct a bilinear steel material object with kinematic strain hardening
as shown in Figure 3.5. Five integration points were assigned along each element to
model the distributed plasticity. A fiber section procedure was used to build the
tubular steel section from 152 fibers patched together. A transient analysis object was
used to apply the Newmark method integrated with the modified Newton-Raphson
algorithm to solve the non-linear equitation of motion under harmonic loading. In
order to avoid convergence problems during time history analysis of the non-linear
frame in the model construction step, a small time step of 2.5¢e-4 sec were used for the

dynamic analysis followed by data resampling with 400Hz sampling rate.
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Stress

Fy=334.8 (MPa)

Figure 3.5. Material model for the steel

3.5.3. FE updating of the non-linear frame

Since the initial assumption for the model parameters plays an important role in
performance of model updating procedures, the non-linear model was updated
multiple times assuming different domains for the model parameters. Figure 3.6 shows
four scenarios that were designed for this purpose. In the first scenario, the initial
domain of the updating parameters was set to 186.2 to 227.5 GPa (27000 to 33000 ksi)

for £ and 0.05 to 0.25 for b to reflect different levels of uncertainty in estimation of

these parameters.
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Figure 3.6. Configuration of RS domains in the validation scenarios

The RS model construction starts with full factorial design of parameters having
three levels for each parameter. Figure 3.7 demonstrates the time history of
displacements u; and u> for a FE model taking the levels of the 3 x 3 design along with
the window selected for RS model construction, evaluation and optimization. This
window was chosen from the time history of displacements so that the responses of
the FE model are well separated at different design levels to avoid numerical errors in
the optimization step. The selected time window contains 700 data samples all used

for the RS model construction, evaluation and optimization.
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Figure 3.7(a). Time history of response of the non-linear FE model (u;) at 3 X 3 design points
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Figure 3.7(b). Time history of response of the non-linear FE model (u#2) at 3 X 3 design points

RS models having the linear terms of £ and b were regressed through the selected
time domain window. The large residuals associated with the regressed models
indicate that the RS models are not accurate to replace the FE model in the time
window. Consequently, quadratic terms were added to the polynomial models and
regression was repeated. R?j statistics of the RS models constructed based on 3 x 3
design points are plotted in Figure 3.8. This figure shows that adding the quadratic
terms to the linear models significantly improves the accuracy of the RS models at the
design points. It is also observed that including the cubic terms in the RS models

decreases R?%,; statistics due to over parameterization. Therefore, the RS models with
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quadratic terms of the model parameters were selected for the performance evaluation

at intermediate levels.

R: i statistics for RS model representing u,
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Figure 3.8. R?%,q; statistics for linear and quadratic RS models

Figure 3. 9 compares the maximum normalized residuals at original and
intermediate levels of the 3 x3design for the quadratic RS models through the time
window. In this figure dark bars show the residuals at original design points while
gray bars represent the residuals at the intermediate design points. The RS models
generate u> with smaller residuals; however, they are not successful in predicting both
u; and u; at the intermediate levels corresponding to b. Therefore, the levels associated
with stiffness ratio, b, in the RS domain should be finer. The steps of model

construction and evaluation are repeated with 4 x 3 design which shows the RS models
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are not accurate at intermediate levels of parameter b. Figure 3.10 displays the
maximum normalized residuals of RS and FE model for a 5x3 design. The RS
models contain terms up to order 4 and 2 for stiffness ratio, b, and modulus of
elasticity, E, respectively. Figure 3.10 shows that the RS models perform well at both
original and intermediate levels. Therefore, these models are accurate for the
optimization procedure. Figure 3. 11 shows the responses of the FE model and the

final RS model in the RS domain at t=2.5 sec.

Residuals corresponding tou & u, . Residuals corresponding tou, & u,

th intb

Normalized residual (%)
Normalized residual (%)

Residuals corresponding to u ) & u Residuals corresponding to u, & L

E tE

N

o
Normalized residual (%)

Normalized residual (%)
(3]

Figure 3.9. Maximum normalized residuals of original and intermediate levels using 3 X 3 design
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Figure 3.10. Maximum normalized residuals of the original and intermediate levels using 5 X 3
design
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Figure 3.11. FE and RS model responses for u; at t=2.5 sec.
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The constrained optimization problem in Eq. (3.6) was formulated and solved
using Active-set constrained optimization algorithm (Nocedal and Wright 2006).
Figure 3.12 shows the histogram of the updated parameters resulted from solving the
optimization problem in every time step of the selected window in the first scenario.
This histogram shows where the updated parameters locate in the RS domain. The
updated model parameters are distributed in a considerably narrower region than the

initial region used in the RS model construction.

In order to decrease the variation of the updated parameters, the design and model
order established in the previous section for £ and b are used to repeat the
optimization problem. The new domain for £ and b is centered on the mean value of
the updated parameters in the first round of optimization. Since in the first round there
were 3 and 5 levels associated with £ and b, the new domain of these parameters is
designed so that £ and b have regions equal to 1/2 and 1/4 of their initial regions.
Therefore, the RS domain is reduced into 207.4 to 228.1 GPa (30080 to 33080 ksi) for
E and .095 to 0.145 for b. Figure 3.13 shows the result of the second round of model
updating in the first scenario in terms of the mean and the coefficient of variation of
the updated parameters. The variations of the updated parameters are decreased, and
the mean value of the parameters shows negligible deviation from the true model

parameters.
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Figure 3.12. Scenario 1- first optimization round
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Figure 3.13. Scenario 1- second optimization round
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In the second scenario, the initial regions for the model parameters are decreased
to 186.2 to 227.5 GPa (27000 to 33000 ksi) for £ and 0.1 to 0.15 for 4. In this scenario
the model construction and evaluation resulted in 3x3 design and quadratic RS
models. Figure 3.14 shows the histogram of the updated parameters where their mean

values converge to the true model parameters in the first round of optimization.
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Figure 3.14. Scenario 2— first optimization round
In the third scenario, one of the true model parameters is located on the boundary
of the selected RS domain. The RS domain in this case is from 175.8 to 217.2 GPa
(25500 to 31500 ksi) for £ and .05 to 0.25 for b. The model construction and
evaluation resulted in 5x 3 design and model order 4 and 2 for b and E, respectively.
Figure 3.15 and 3.16 show the result of the first and second optimization rounds. The

first optimization cycle successfully locates a region for the true model parameters to
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which the solution of the second round of optimization converges. As it is seen in the
1t and 3" cases, shrinkage of the selected domain, reiteration of RS modeling and
optimization result in convergence to the true model parameters. However, in other
situations if the true model parameters do not lie in the new region, the constrained
optimization problem of RS model optimization converges to the closest corner of the
RS domain to the true model parameters and results in reduction of the uncertainty

associated with the initial assumptions of model parameters.
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Figure 3.15. Scenario 3- first optimization round
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Figure 3.16. Scenario 3— second optimization round

RS domain in the last scenario is designed so that both true model parameters
are located on the boundaries of the RS domain. In the initial RS domain E and b vary
from 175.8 to 217.2 GPa (25500 to 31500 ksi) and 0.125 to 0.325 respectively. Based
on the model construction and evaluation 3 x3 design and quadratic RS models were
selected. Figure 3.17 displays the result of the model updating in this scenario where
the procedure performs wells in modifying the initial regions for the model parameters
regardless of the location of the true parameters inside the RS domain used to fit the

RS models.
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Figure 3.17. Scenario 4— first optimization round

In the cases studied in this chapter, the corners of the RS domain were used to
establish a multi-start optimization process using active-set algorithm. Since the
resulted histograms from the multi-start optimization procedures were not sensitive to
the choice of the initial point, in this case study applying a global search technique
was not necessary. It should be noted that in these case studies, RS model updating
succeeds in finding the unique solution of the inverse problem. However, in some
model updating problems, a “family” of solutions could satisfy the optimization
objectives. Global search of the domain of model parameters discovers possible
scenarios of meaningful updated parameters for the FE model to generate similar
response features. The use of RS models readily enables application of any

optimization techniques to explore the domain of model parameters which may not be
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feasible using the full FE model. However, RS models are at best approximating the
FE model responses. They reduce the computation effort of the search for model
parameters in a lower resolution domain. While this may alter some of the possible
optimal results, application of RS models in FE model updating proves helpful in
better parameter estimations than the initial model assumptions in predicting the

measured responses.

3.5.4. Performance of the proposed algorithm compared with sensitivity

method

To verify the performance of GRSMU, the non-linear model studied in the
previous section was updated using sensitivity method and the results of the two
procedures were compared. For each scenario described before the sensitivity method
model updating was applied using the vertices of the RS domain as the initial point.
The case of the second scenario with the smallest RS domain was the only one where
the sensitivity method converges to the true model parameters using any of the starting
points. In the other scenarios when the initial point is relatively far from the true
model parameters the procedure does not converge to these parameters. These results

were summarized in Table 3.1.
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Table 3.1. Comparison of the performance of GRSMU and the sensitivity method (Noise-free
simulated data)

Relative error (%) in updated parameters

Starting point Sensitivity method GRSMU
b G%a) b E(GPa) b E(GPa)
005 1862 03 0.1
Case 1 025 1862 N.C2 0 ol
b: 0.05 to 0.25 005 2275 03 03
E: 1862102275 GPa 025  227.5 N. C.
0.1 1862 02 0
Case2 015 1862 05 0 0 .
b: 0.1100.15 01 2275 0 02
E: 1862102275 GPa  0.15 2275 02 03
005 1758 0.1 0
Case 3 025 1758 N.C . .
b: 0.05 t0 0.25 005 2172 02 03
E: 1758102172 GPa 025  217.2 N.C
Case 4 0.125 1758 02 03
b: 0.125 0 0.325 0325 1758 N.C. 0.6 0
E: 1758102172 GPa 0325  217.2 N. C.

aN. C. : No Convergence

Furthermore, to evaluate the performance of GRSMU in the presence of noisy

measurement data, different levels of Gaussian noise were introduced into the

simulated experimental responses and the updating procedures in cases 1 and 4 were

obtained. The sensitivity-based method was also repeated for data from a time

window, such that the updated parameters of each time step were used as the initial

point for the next one. The results of these procedures are summarized in Table 3.2.
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Table 3.2. Comparison of the performance of GRSMU and the sensitivity method (Simulated
data with different noise levels)

True model Parameters b=0.125 E=217.2(GPa)*

Starting point Sensitivity method
Relative error (%) in
noise updating parameters
b E(GPa) level(%) time(sec) b E(GPa)
Case : 1 1 4704 0.80 -0.3
b: 0.05 to 0.25 0.05 186.2 5 6538 0.80 0.6
E: 186.2 to 227.5 GPa 10 7043 104.00 -13.2
Case : 4 1 4723 0.00 0.8
b: 0.125 to 0.325 0.125 175.8 5 6221 21.60 -5.5
E: 175.8 t0 217.2 GPa 10 9174 68.80 -10.4
Starting point GRSMU
Relative error (%) in
noise updating parameters
b E(GPa) level(%) time(sec) b E(GPa)
Case : 1 1 1177 0.16 -0.04
b: 0.05 to 0.25 0.05 186.2 5 1132 4.64 -1.94
E: 186.2 to 227.5 GPa 10 1115 10.72 -3.72
Case : 4 1 288 3.52 -1.40
b: 0.125 to 0.325 0.125 175.8 5 274 15.20 -5.59
E: 175.8 t0 217.2 GPa 10 274 25.60 -7.72

When the noise level is low (1%) for case 1 both methods are similarly accurate
(less than 1% relative error), while for case 4 the error in updated parameters based on
GRSMU goes up to 3.5% . It should be noted that scenario 4 was designed to have
both true model parameters on the boundaries of the domain and as it can be seen in
Table 3.1 the results of the sensitivity-based method for this scenario are highly
dependent on the choice of starting point for convergence. In the case of moderate

noise level (5%) GRSMU outperform the sensitivity-based method in scenario 4.
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Lastly, with high level noise assumption, GRSMU yields significantly more accurate
results in both scenarios. The performance of these procedures was further compared
in terms of the time required to complete the updating process. As seen in Table 2
GRSMU shows to be considerably more time efficient than the other method, for
instance in case 1 (1% noise) performing 70 steps of sensitivity-based updating took
4704 seconds, whereas the overall time required for model construction, evaluation
and optimization for 700 time steps based on GRSMU took 1177 seconds.

The advantage of using GRSMU is that this procedure successfully finds a smaller
region for the model parameters regardless of the size of the RS domain, location of
the true model parameters and the starting point in the optimization process.
Moreover, the results of GRSMU have corrective information for the initial estimate of
the RS domain whereas with a relatively far estimate for the parameters the sensitivity
method may yield meaningless results. Finally, while GRSMU requires significantly
less computational time than sensitivity-based updating method, it shows more

robustness to moderate and high level noise.

3.5.5. Performance of the proposed algorithm in presence of modeling

error

Modeling errors proves unavoidable in any FE model simulations. Therefore,
study of the proposed method’s performance in existence of such errors is of value.
For this purpose, 1% and 4" scenarios introduced earlier were reiterated by using
another FE model to generate the measured responses. This model consists of 28

elements with 602 fibers in their sections modeled with Steel02 uniaxialMaterial
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properties which adopts uniaxial Giuffre-Menegotto-Pinto steel material model

(Mazzoni et al 2009). Three time windows were selected for the optimization from

0.75 sec to 7.625 sec, each having 700 time steps. Due to modeling error introduced to

generate reference responses, maximum error associated with u; and u; in the selected

time windows are 29.88% and 27.76% relative to the responses from FE model

without any modeling errors. Root mean square of the error is 6.80% and 6.18 % over

all three windows. The results of these case studies in terms of the relative error in

estimation of the parameters are shown in Table 3.3. The error is larger compared to

cases without modeling error (shown in Table 3.2) except for error in estimation of b

in case 4 with moderate and high measurement noise levels.

Table 3.3. Relative error in estimation of the parameters in presence of modeling error and

measurement noise

Relative error (%) in

Noise updating parameters
Level medn
(7o)
b E
Case:1 1 1.42 -3.82
b: 0.05 to 0.25 5 6.01 -4.59
E: 186.2 to 227.5 GPa 10 10.87 -4.60
Case : 4 1 6.62 -5.21
b: 0.125 to 0.325 5 14.41 -7.77
E: 175.8 t0 217.2 GPa 10 23.75 -9.20

3.6. Summary and Conclusions

This chapter presents a procedure for designing RS models capable of generating

the results of FE analysis with good accuracy. Also, formulating the model updating
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problem in an iterative format in time domain is demonstrated to update non-linear FE
models. This procedure is called General Response Surface Model Updating

(GRSMU).

GRSMU was applied to a numerical case study of a steel frame with global non-
linearity. In the first and second steps an appropriate design and RS model order were
successfully established. The optimization in time window performed well in all
simulated scenarios. The first round of optimization resulted in a considerably
narrower bounds for the uncertain parameters of the model than the initial boundaries
set at the beginning of the procedure. Repeating the RS model construction with
known order and design for the new bounds of parameters and solving the
optimization problem resulted in updated parameters with slight deviation from the

true model parameters.

In order to verify the performance of GRSMU , the simulated scenarios was
repeated based on a sensitivity-based model updating technique assuming different
levels of noise in the measurement data. Unlike GRSMU, the convergence of the
sensitivity-based method depends on the choice of the starting point. Moreover, the
results of GRSMU have corrective information for the initial estimate of the RS
domain whereas with a relatively far estimate for the parameters the sensitivity
method may yield meaningless results. Finally, while GRSMU is considerably more
time efficient than sensitivity-based updating method, it shows more robustness to
moderate and high level noise. The performance of GRSMU was also studied in a

simulation study in presence of modeling error. It was observed that in the case study
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presented here, GRSMU is successful in estimating the unknown parameters of the
model, with a larger estimation error than the cases without modeling error,

particularly when measurement noise level was low.

Since in the proposed methodology the RS model is optimized in time domain, the
procedure is applicable to linear or non-linear models under static or dynamic analysis.
Moreover, parameters related to linear and non-linear behavior of the system can be

updated simultaneously as done in the simulated case study.

It should be noted that although replacing the FE model with a polynomial
function is a critical step in simplifying the model updating problem, the fact that the
RS model is at best an approximation should not be overlooked. Therefore,
construction and evaluation of RS models iteratively in time domain is proposed here

to compensate for the error caused by approximation of the FE model responses.
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Chapter 4

Effect of Measurement Noise and
Excitation on Generalized Response
Surface Model Updating

This chapter evaluates the sensitivity of the model updating algorithm presented
in the previous chapter (GRSMU) with respect to measurement noise (Shahidi and
Pakzad, 2014b). This evaluation is critical, as noise contamination is inevitable in
any measurement procedure. In addition, the effect of input excitation frequency
content and further application of this method in updating a non-linear frame under

seismic loading are presented.

In RS-based FE model updating, RS models replace the full FE model in a pre-
selected domain of unknown model parameters, here called RS domain. These RS
models are constructed using least square techniques (Montgomery et al., 2004) by
regressing a polynomial function on a set of points sampled from the RS domain.
Techniques of designs of experiments (Montgomery, 2001) can be employed in order
to sample these points. However, finding the appropriate model order associated with
each parameter and design of model parameters’ levels that produce accurate RS

models, require a number of trials and errors which may contradict the primary
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motivation for using the RS models to decrease the computational cost of FE model

analyses in model calibration.

GRSMU is proposed to systematically design the levels and model order of the RS
models, and extend the application of RS modeling for non-linear model updating in
time through RS model construction and optimization iteratively at every time step of
the analysis. In order to construct accurate RS models capable of predicting the
response of the FE model throughout the RS domain, GRSMU adopts a full factorial
design with minimum number of levels and linear RS models. This procedure is
subsequently followed by evaluation of the regressed RS models in terms of accuracy
and predictability, and increasing the model order or number of levels associated with
each model parameters, when required. When RS model order and design are decided,

any non-linear constrained optimization algorithm can be readily adopted to solve this

explicitly formulated FE model updating problem formulated in Eq. (4.1) for the I

time step of the non-linear dynamic analysis.

3 s RS, (0:09‘"50”1)_.)/6)(1'
mmf/=\/2,:l( — ") i=12,...s

9] yexpil (4. 1)

s.t. @

Jjlb

<6,<46, j=12,...m

In this equation RS,(6,6,....,6,) denotes the RS model associated with the I

time step of the analysis representing the i’hanalytical response feature, as a function

of the pre-selected uncertain model parameters (6,6, ,...,6,), 8,,and 8, represent the
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lower and upper bounds of the j” model parameters in the RS domain, and Vexpit 18

the i’hresponse feature measured at the /” time step of the experiment.
4.1. Sensitivity of the GRSMU Estimates to Measurement Noise

This section investigates the effect of measurement noise on the parameter
estimation results of GRSMU. This study simulates the measurement error as White
Gaussian noise in which the values at any pair of time instances in the noise signal are
statistically independent and identically distributed with a zero-mean normal

probability distribution.

In order to study the sensitivity of GRSMU estimates to noise, assume a single-
DOF dynamic system. As Eq. (4.2) indicates, the measured output of this system (um)
at any time instance ti can be considered as a summation of real response (um') and

measurement noise in that time step.

w, (1) =u,” (1) + n(t;) (4.2)

where n(ti) is a random variable representing the amplitude of noise in time t;

having a zero-mean normal distribution with standard deviation c.

With assumption of known mass, the response of an FE model simulating this
system is a function of stiffness (k). Over a small domain of k, a linear RS model can
approximate the real response of the system at any time step of the analysis. Eq. (4.3)

presents this linear function at time step t;.
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RS(k,t,) = By (t.) + B (1)) xk
k,, <k<k,,

b —

(4.3)

In this equation, ki, and ku, denote the lower and upper bounds of domain of k,

where the linear RS model (with coefficients 3, (¢,) and pB,(t,) ) replaces the FE

model of the system. Eq. (4.4) formulates the model updating procedure in which
parameter estimation is accomplished by minimizing the residual of the predicted and

measured responses.

min  f(k,t,) = (B, (t,) + B (1) %k —u, (1))’

5. 1. k, <k<k,

(4.4)

Since f is a nonnegative function, its minimum value at every time step (ti)
corresponds to the root of f(k,t;). This statement holds with the assumption that the
domain of the RS model includes the root of f(k,t;). High amplitudes of noise and/or
when model parameters locate outside or on the corners of the RS domain can
contradict this assumption. In such cases the solution of this constraint optimization

problem is ki, or ky, whichever associates with a smaller f.

Therefore, estimation of k based on the measured response kest in time instance t; is

u, (1) = By (1)

kest (tl) = [’? (t )

(4.5)

It should be noted that if f(k,ti) in Eq. (4.5) has two roots (ki and ku) in the

domain, the formulation of the problem does not change. Double roots in the domain
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could occur because (1) ki, and kyp generate the same response at time step ti, or (2) ki
and kub, generate the same response time history. In case (1), as the time history of the
responses are not the same in other time steps, through the parameter estimation in
time history of the reponse, the true k will be estimated. In case (2), by solving Eq. (4)
using a global optimization framework which is able to find multiple optima, both ki,
and kyp are estimated. Therefore, in both cases, Eq. (4.5) can be used to demonstrate

the estimated stiffness with reference to the measured response of the system.

Since “n (1) > Bo(t)) and  Bi(1;) 5pe independent of measurement noise, the

expected value of ke (1) can be written as

u, (1) = By(t)

O T

(4.6)

therefore, its sensitivity with respect to the standard deviation of White Gaussian
noise 1s

aE[kest (tl )] e O

o (4.7)

This results show that the expected value of the estimated stiffness in time is not
sensitive to the measurement noise amplitude. The main assumption in derivation of
Eq. (4.7) is zero-mean assumption for the noise signal. Therefore, for any non-
Gaussian or non-stationary noise, it is expected to observe similar estimation
performance as long as the zero-mean assumption for the underlying probability

density function of the noise signal holds. In the following sections, several parametric
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sensitivity studies are performed to accomplish this goal with assumption of White

Gaussian measurement noise.

4.2. Non-linear Model Updating Using Harmonic Loading

This section describes the implementation of the methodology that was developed
in previous section to study the robustness of GRSMU in a single-DOF and a multi-
DOF bilinear system. In each case, the response of the system is simulated under
several assumptions of measurement noise level and input excitation. The parameter
estimation is then completed in two different time-domain windows, and the
estimation error is investigated. The following subsections describe the sensitivity

study carried out for these systems in detail.

4.2.1. Numerical simulation: Single-DOF system

This section studies the sensitivity of GRSMU estimates to the measurement noise
level through a numerical case study of a single-DOF non-linear system under
harmonic loading. This single-DOF system is simulated with unit mass (1 Ib.sec?/in =
175.09 kg) and bilinear stiffness material model. Stiffness of the system (k) and
yielding force are 4 1b/in (0.7 N/mm) and 4 lb (17.79 N), respectively. The natural
period of vibration of this system (T,) is 3.14 seconds. Post yielding stiffness ratio of
the system (a) is selected as an uncertain model parameter varying between 0.2 and

0.8 to be estimated from the time history of the displacement of the mass.
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In order to study the impact of the frequency of the input harmonic loading, in
different scenarios period of the applied load (Tiad) varies so that the ratio of the
loading frequency over the natural vibration frequency varies from 0.1 to 10. In these
scenarios the amplitude of the load is adjusted so that in all the cases maximum
displacement of the system in the longer window used for parameter estimation is 3 in
(7.62 cm). A time step of 0.001 sec is used in the time history analysis of this non-
linear system, which satisfies a convergence test with 10e-6 1b (4.45e-6 N) tolerance
for the norm of the unbalanced force in every time step of the dynamic analysis. This
time step is small enough, not to affect the accuracy of the results, as selection of a

smaller time step did not change the results of the dynamic analysis.

In every scenario, two time-domain windows are used for the parameter
estimation: (1) a Tn-sec long window, and (2) a Tiead-sec long window. The model
construction and evaluation steps in the longer window of (1) and (2) in every scenario
are completed to obtain the RS models of displacement as functions of a.
Subsequently, residuals of simulated measured displacement and regressed RS models

are minimized along the selected time window to update a.

The optimization problem of model updating in the Ty-sec long time window is
completed with sampling frequency of 100 Hz based on a multi-start optimization
framework using interior-point algorithm (Nocedal and Wright 2006). Different levels
of the measurement noise are assumed in each case. Noise level denotes the ratio of
the root mean square of the simulated Gaussian noise signal to the root mean square of

the simulated measured signal. Figures 4.1 to 4.4 show the results of the updating
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procedures where a is set equal to 0.625 and 0.2 to simulate the measured

displacement signal.

_
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Noise Level

Figure 4.1. Error sensitivity in estimated o (Single-DOF system, atrue=0.625 and Tn-sec long
window): mean
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Figure 4.2. Error sensitivity in estimated a (Single-DOF system, atrue=0.625 and Tn-sec long
window): median
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The results show that, as indicated by Eq. (4.6), the mean of the updated a is fairly

insensitive to the measurement noise level, particularly when it is low or medium.

However, when the assumptions made in derivation of Eq. (4.4) are violated, the

constrained optimization problem of RS model updating is likely to result in the

bounds of the selected RS domain as the optima. This can cause the mean value of the
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estimated a deviate considerably from atrue, while the median - having a breakdown
point of 50% -robustly estimates the true a. Therefore, in the following cases, the
median of the updated model parameters are reported as the point estimate of the true
parameters. These figures also show that, when sampling frequency in the response
measurement is high enough relative to the loading frequency, frequency of the input
excitation does not significantly influence the accuracy of the estimated parameters,

particularly at low levels of measurement noise.

The updating procedure in the previous scenarios is iterated in a time window
equivalent to the period of loading (Tiad) in each case. The optimization frequency in
these cases is adjusted to have the same number of time steps as for the cases with Ty-
sec long time window. Figure 4.5 and 4.6 display the error sensitivity of the median of
the updated parameters to the measurement noise, when the parameter estimation of
this single-DOF system is completed in a Tioad-sec long time window. This figure
shows that when are=0.625, the estimation error is less sensitive to the noise level and
the length of the time window compared to the cases when owe=0.2. Furthermore, in
the latter cases, the largest estimation error of all of the noise levels is observed when

frequency of the loading approaches natural vibration frequency of the system.
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Figure 4.6. Error sensitivity of the median estimated o (Single-DOF system, Tioada-sec long
window): oitrue=0.2

It should be noted that, amongst all the cases of the single-DOF model updating,
the results of the cases with Ticad/Tn =10 (“slow” loading) consistently show
robustness to 20% measurement noise level. When the harmonic load is applied “fast”

(Ti0ad/Tn =0.1) and Ticad-sec window is used for parameter estimation, the estimation
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error is comparable to the results of the “slow” loading; however, when updating is
completed in the constant length time window (T, sec), the estimation error for the
“fast” loading case is larger than the “slow” loading case, at 20% measurement noise
level. Figures 4.7 to 4.10 illustrate the normalized median deviation of the parameter
estimation in all the cases studied here. Since the median is selected as the point
estimate of the updated parameters in each scenario, the absolute median deviation
with respect to the median of the histograms of updated a is calculated and normalized

by the true model parameters in each case.
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Figure 4.7. Normalized median absolute deviation of the estimated a (Single-DOF system, Tx-sec
long window): atrue=0.625
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Figure 4.9. Normalized median absolute deviation of the estimated o (Single-DOF system, Tioad-
sec long window): dtrue=0.625
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These figures show that the dispersion of the updated a is roughly insensitive to
the selected time window, with the exception of the cases with small ratio of Tioad/Tn
when 0e=0.625. Furthermore, the largest deviation corresponds to the cases with the
highest level of noise contamination. When oe=0.2, the deviation of the updated o
increases considerably as the period of the harmonic loading approaches the vibration
period of the system. The reason is that in such cases, the response of this non-linear
system in the selected time windows has low sensitivity to permutation of the post
yielding stiffness ratio, and thus in the cases with high simulated measurement noise,

dispersion of the optimization results increases significantly.

4.2.2. Numerical simulation: Multi-DOF system

In order to further investigate the sensitivity of GRSMU to the measurement noise
and input excitation, a multi-DOF system is considered. This simulation is for a

cantilever steel beam with non-linear material model under a harmonic load, applying
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vertically at its tip. Figure 4.11 shows the configuration of this simulated beam. This
beam, with 30 in (76.2 cm) length, has a 2” (5.08 cm) square section. The steel
behaves bilinearly with modulus of elasticity (E) and yield stress of 29,000 ksi (200
GPa) and 50 ksi (344.8 MPa), respectively. A uniform dead load on the beam is
designed so that the fundamental vibration period of this system (T1) is 1.57 sec. Post
yielding stiffness ratio of the material (o) is selected as uncertain model parameter
varying between 0.2 and 0.8. Time history of displacement at the tip of the beam (u(t))
is used to estimate a in this range in scenarios with different ratios of Tioad /T1 varying
between 0.2 to 20. In all these cases, maximum displacement in the longer model
updating window and the true model parameters are the same as for the single-DOF

case discussed previously.

F(t)

u(t)

Figure 4.11. Configuration of the simulated cantilever beam
It should be noted that GRSMU framework can be used for parameter estimation
in linear and non-linear systems. For linear systems, in addition to using input-output
data for model updating, natural frequencies and mode shapes can be used for
parameter estimation through GRSMU which requires no prior knowledge of the input
excitation. However, in the cases of non-linear systems, to use the time domain data

for updating the uncertain model parameters, known input excitation is used to run the
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FE model, generate, and validate the RS surrogate models. Therefore, RS model
construction and evaluation in all these single- and multi-DOF cases are completed
with assumption of known experimental input excitation, and thus the type of
excitation (harmonic, random, etc.) does not bear any effect on the proposed
methodology for parametric sensitivity study. In order to study the robustness of
GRSMU results to the frequency content of the input excitation, single harmonic
loading is chosen in this study which allows controlling one parameter (loading
period) at a time and studying the potential effect of dynamic amplification of the
system on GRSMU estimates, while in each case several levels of measurement noise
contamination is also considered. In applying the input harmonic excitation, the period
of loading is set while the amplitude is adjusted in each Tiad/T1 case to have equal
maximum displacement response in the longer model updating window. This load
adjustment is required to establish a fair comparison of the parameter estimation

accuracy when loading period is widely changing in different cases.

The bilinear material behavior considered in these case studies is plastic, i.e.,
during the unloading phase the material takes its initial stiffness. Based on this
assumption, the instantaneous fundamental period of these single- and multi-DOF
systems change between two values; elastic period of vibration and elongated period
which is bounded to [1/4/0.8 1/4/0.2]T; = [1.12 2.34]T;. In order to compare the
results of all the cases considered, fundamental period of vibration (in elastic range) is
selected. Since the elongation bound is constant in all the considered scenarios, this

would not change the interpretation of results in terms of the “fast” or “slow” loading.
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A 2-dimensional lumped mass FE model is developed in Opensees software
(Mazzoni et al. 2009) using fiber section procedure, Steel01 uniaxialMaterial model,
and non-linearBeamColumn elements. This FE model consists of 10 frame elements,
11 nodes, and overall 30 DOFs. A transient analysis object is used to apply the
Newmark method integrated with the Krylov-Newton (Scott and Fenves, 2010) to

solve the non-linear equiation of motion in each case with a time step of 0.001 sec.

In order to study characteristics of noise signals as samples of a desired Gaussian
population, for each case of Tiad/T1 ratio, 50 rounds of simulations are conducted for
the same noise level. In every scenario, two time windows were used for the parameter
estimation: (1) a Ti-sec long window, and (2) a Ticad-sec long window. The steps of
RS model construction and validation in each case is carried out in the longer window
between (1) and (2). It should be noted that when Tioad/T1=0.2, due to rapid change of
the stiffness of the beam elements under high frequency loading, the response of beam
is not predictable so the regressed RS models fail to estimate the response of the FE
model over the entire domain of a. Therefore, RS model evaluation is not possible,
and thus the optimization step is not completed in the cases corresponding to loading

with this period.

Figures 4.12 and 4.13 show the error sensitivity of the median estimated a for all of
the 50 simulations when Tiead/T1 is 20, 2, and 0.4, and with the assumption of
awrue=0.625 and 0.2, respectively. These figures show that the estimated o has larger

variation as the noise level increases. When oe=0.2, the estimation error is sensitive
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to the length of the selected time window, such that model updating in a longer time

window, results in higher estimation error.

Figures 4.14 to 4.17 display the estimation error of the median of the estimated o
in all the 50 cases associated with each noise level and Ticad/T1 ratio. These figures
show that as the noise level increases, the estimation error increases particularly when
Otrue 18 at the corner of the selected RS domain. Furthermore, the estimation error in
the cases with the largest ratio of Ticad/T1 appears to have the least sensitivity to the
noise level and the selected time window. The reason is that when the vibration
frequency of the system is outside of the frequency bandwidth of the load, the
response of the model at different levels of the uncertain model parameters has the
same frequency content as for the loading (a “steady-state” response). Therefore, the
results of the model parameter estimation in time are robust to high measurement

noise level and selected time window.
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Figure 4.17. Error sensitivity of the median of the median estimated o (Multi-DOF system,
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4.2.3. Effect of damping

In order to study the effect of damping in the performance of GRSMU, different
levels of damping are considered for the non-linear cantilever beam. In these
simulations, Rayleigh damping is assumed, and the mass- and stiffness-proportional
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damping coefficients are designed so that 1 and 5 natural modes of vibration of the
beam have 0.02, 0.05, and 0.1 damping ratios in different cases. Two levels of loading
period (Ti0ad/T1), and four levels of noise contamination are considered. Parameter
estimation is carried out in Ti-sec and Tiead-sec long widows. The results of parameter
estimation (shown in Figure 4.18) are consistent with the observations in the previous
sections; when frequency of loading is high relative to natural frequency of the

system, estimation error is sensitive to the length of optimization window.

Absolute relative error (%)
Absolute relative error (%)

Noise Level (%) ©2 Damping (%) Noise Level (%)
(a)

— o T1—sec window

—a T __ -sec window
load

Figure 4.18. Error sensitivity in estimated a: (a) Tioad/T1=0.4 and otue=0.2 and (b) Tioaa/T1=0.4
and 0true=0.625 (¢) Ti0aa/ T1=20 and oitrue=0.2 and (d) Tioad/T1=20 and 0true=0.625
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4.3. Non-linear Model Updating Using Seismic Data

The previous section demonstrated that GRSMU estimates show robustness to the
measurement noise, particularly in the cases where the input excitation has lower
frequency content than the fundamental frequency of the system. This implies further
application of this method in updating parameters of non-linear models in time under
seismic loading. To validate such application, in this section a steel frame with bilinear

material model is considered.

Details of the simulated steel frame, description of the factors considered to study
the variability of the results, and the results of the updating procedures are presented in

the following subsections.

4.3.1. Non-linear frame

The model presented in this section is a steel frame with non-linear material
properties under dynamic loading. The frame consists of one span with overall length
of 77 6” (228.6 cm) supported by columns that are 2 9” (83.8 cm) long. The cross
section of the beam and column members is uniform hollow 2” (5.08 cm) tube, with
0.083” (0.21 cm) wall thickness. The column supports are fixed and the frame is
considered a “plane frame” which constrains out-of-plane and torsional degrees of
freedom. The steel has bilinear behavior with the yield stress of 50 ksi (344.8 MPa).
Modulus of elasticity (E) and post yielding stiffness ratio of steel (b) are chosen as the
updating parameters. The input excitation in this model is a dynamic load resulting

from selected earthquake records applied to the left column-beam joint. To update the
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pre-selected parameters of the model, simulated time histories of displacement at two
locations on the frame are used. Figure 4.19 shows the configuration of the frame,

loading and responses used for updating the FE model.

u;
s ,‘f‘,

y
nnl,x tcccd

Figure 4.19. Configuration of the non-linear steel frame

4.3.2. Simulated model

A 2-dimensional massless model is developed in Opensees software (Mazzoni et
al. 2009). The model consists of 8 nodes and 7 elements dividing beam and columns
members into two and three segments, respectively. Each node has three degrees of
freedom, ux, uy and 8z which allow for translation and rotation in xy plane. Elements
are modeled as non-linearBeamColumn having Steel01 uniaxialMaterial properties to
construct a bilinear steel material object with kinematic strain hardening. Five
integration points were assigned along each element to model the distributed
plasticity. A fiber section procedure is used to build the tubular steel section from 92
fibers patched together. Due to zero-mass assumption for the steel tube section, the
behavior of the system is not dynamic, and thus static or transient analysis objects with

appropriate integrators can be used to solve the equation of motion under seismic
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loading. In this study, a transient analysis object is used to apply the Newmark method

integrated with the KrylovNewton algorithm (Scott et al., 2010).

The main purpose of studying these numerical simulations is to investigate the
effect of frequency band limited excitations -at different measurement noise levels- on
the GRSMU estimates. As shown in Section 4.2.3, this can be completed regardless of
the damping level of the system. Therefore, for this non-linear frame model damping

was not considered.

4.3.3. Parametric study

In order to evaluate the performance of GRSMU algorithm using seismic loading,
variability of the model updating results are studied by considering: earthquake loads
with different characteristics; various assumptions for true model parameters; and

several levels of noise to contaminate the simulated response of the structure.

In this simulation, the RS domain for the updating parameters is set to 27,000 to
33,000 ksi (186.2 to 227.5 GPa) for E and 0.05 to 0.25 for b. Since the location of true
model parameters in the RS domain is always unknown in the inverse problem of
model updating, four pairs of model parameters are selected from the RS domain to
simulate the measured responses of the non-linear frame under earthquake loading.

Table 4.1 presents the true model parameters that are used for simulation.
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Table 4. 1. Case studies of model parameters used to simulate the measured signals

b

True model parameters

B(x10° ksi) E(GPa)

Case (1) 0.065
Case (2) 0.05
Case (3) 0.18
Case (4) 0.125

27.5 189.6
33 227.5
28 193.1
31.5 217.2

Three earthquake records with different characteristics in terms of duration, fault

distance, and frequency content are selected to study the sensitivity of the parameter

estimation procedure to seismic input excitation. Figure 4.20 shows the time history

and Fourier amplitude spectra of these ground motion records.
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Figure 4. 20. Acceleration time history and Fourier amplitude spectra of: (a) Kern County
earthquake (1952), (b) Northridge earthquake (1994), and (c) Imperial Valley earthquake (1940)

The selected earthquake records are: (1) Fault-normal component of Kern County

earthquake (1952) recorded at LA Hollywood Stor Pe Lot station (PEER, 2013) which

is a long duration far-fault record with a relatively long strong motion portion, (2)

Fault-normal component of Northridge earthquake (1994) recorded at Rinaldi
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Receiving station (PEER, 2013), a near-fault short duration record with a pronounced
pulse in its time history, and (3) North-south component of horizontal ground
acceleration of the Imperial Valley earthquake (1940) recorded at EL Centro station
(PEER, 2013) which has a frequency content more uniform than the first two records
and a relatively medium length strong shaking part. These earthquake records are
scaled to simulate a dynamic lateral force at floor level which creates 1 in (2.54 cm)
maximum ui(t), when model behaves linearly with E=33,000 ksi (227.5 GPa). The
effect of measurement noise is also investigated by contamination of the simulated

reference responses with Gaussian noise signals with different standard deviations.

4.3.4. Parameter estimation using GRSMU

The unknown model parameters are estimated based on the measured responses of
the frame in 60 simulated scenarios resulting from three different input excitation, 4
different pairs of true model parameters, and 5 different levels of measurement noise.
The model construction and evaluation steps of the GRSMU algorithm resulted in a
5x3 design for b and E. The RS models regressed on this design have model order of 4
for b, and 2 for E. In the optimization step, the resulting optimization problem in Eq.
(1) is formulated and solved iteratively in a window selected from the response of
system to the strong motion segment of each earthquake loading. Table 4.2
summarizes the information regarding the model updating window associated with

each earthquake loading case.
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Table 4.2. Details of the steel frame model calibration using Earthquake records

Earthquake Record | s ., (Sec) teqy (Sec) dt rea(sec) dt opi(sec) N opt

EQ(1) Kern County 11.95 215 0.005 0.010 955
EQ(2) Northridge 24 3 0.001 0.001 600
EQ(3) Imperial Valley 1.66 48 0.002 0.004 785

1: beginning of the time window used in the model calibration

2: end of the time window used in model calibration

3: time step used in finite element analysis (FEA)

4: time step used for parameter etimation in the selected time window

5: number of time steps used in the parameter estimation

In order to find the global minimum of the formulated objective function at each
time step, a multi-start optimization framework is adopted based on interior-point
algorithm (Nocedal and Wright 2006) using four corners of the RS domain as starting
point. Figures 4.21 and 4.22 display the histograms of the updating parameters using
EQ (1) record to simulate the input seismic loading on the frame. These figures show
that GRSMU successfully estimates the model parameters regardless of the location of
the true model parameters in the selected RS domain. The parameter estimation
procedures are reiterated to capture the variability of the results with respect to the
input excitation and noise level in each case. Figure 4.23 summarizes the estimation
error in all the 60 cases considered in this study. This figure indicates low error
sensitivity of GRSMU estimates to measurement noise level in all cases with the
exception of case (2) with high level measurement noise. Moreover, it is observed that

the results are not sensitive to the choice of the ground motion record used for

earthquake loading simulation.
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Figure 4.21. Histograms of the updated parameters using EQ (1) record (noise-free data): Case
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Figure 4.22. Histograms of the updated parameters using EQ (1) record (noise-free data): Case
(3), (b) Case (4)
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Figure 4.23. Error sensitivity in parameter estimation of the steel frame: case (1), (b) case (2), (c)
Case (3) ,and (d) Case (4)

4.4. Summary and Conclusions

GRSMU is a generalized procedure for non-linear model updating using time-
domain data. In GRSMU, the parameter estimation is accomplished through
approximation of the input-output relationship of the non-linear FE model with RS
models, and optimization of an objective function based on measured response and
regressed RS models successively through the time history of the measured data. This
chapter is primarily concerned with the sensitivity of GRSMU estimates to noise,
since a reliable parameter estimation technique should be robust to measurement noise

which inevitably exists in any monitoring data.

In this study, with the assumption of White Gaussian measurement noise, it is
analytically shown that the GRSMU estimates have low sensitivity to the standard
deviation of the noise. Numerical simulations of non-linear systems with several

assumptions for measurement noise level, input excitation, true updating parameters,
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and time-domain window for parameter estimation are used to validate this
methodology. The results of the estimation of the post yielding stiffness ratio of the
material in these systems through GRSMU show that the estimation error is fairly
insensitive to low and medium measurement noise level. Additionally, when the
vibration frequency of the system is outside of the frequency bandwidth of the load,
the results show the least sensitivity to measurement noise level, selected time window

for optimization, and location of the true model parameters in the RS domain.

Further application of GRSMU is also studied through a case study of a steel
frame with bilinear material under seismic loading. In this simulation, three
earthquake records with different characteristics in terms of duration, fault distance,
and frequency content are selected to capture the variability of the parameter
estimation results. The uncertain model parameters are successfully estimated based
on the measured responses of the frame in 60 simulated scenarios resulting from 3
different input excitation, 4 pairs of true model parameters, and 5 increasing levels of

measurement noise.

It should be noted that as this study is mainly concerned with evaluation of the
overall performance of GRSMU algorithm, uniform spatial distribution is assumed for
the unknown model parameters. In model-based damage detection scenarios, different
spatial distribution could be possibly assumed in order to locate and quantify the

structural damage.
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Chapter 5

Assessment of the 2011 Virginia
Earthquake Damage and Seismic
Fragility Analysis
of
the Washington Monument

The 2011 Virginia Earthquake underlines the need to assess seismic vulnerability
of structures in the Central and Eastern United States (CEUS), where according to the
United States Geological Survey (USGS), due to the unique geological and
geotechnical conditions, ground shaking although less frequent can be felt over a
significantly broader region compared to similar events in the Western United States,
and therefore the consequential damage is expected to be more widespread. One
example of this phenomenon is the damage observed in the Washington Monument
following the August 2011 Virginia Earthquake, which occurred despite being located
over 130 km away from the epicenter of this 5.8 Mw earthquake in Mineral, VA.
Several damage observations in this structure were reported including cracks, surface
spalling, and dislodging of stone blocks in the pyramidion, crumbled mortar, as well
as damage to the elevator (Wiss, Janney, Elstner Associates, Inc. 2011). The structure

was immediately evacuated and remained closed to public for nearly three years to
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complete the repairs to the Monument. Due to architectural and national significance
of this structure, it is of substantial interest to study the possibility of damage to this
structure under future seismic events. Such a prediction is beneficial for decision

making in regards to the development of health monitoring plans for the structure.

This chapter investigates the fragility of the Washington Monument at different
seismic hazard levels. For this purpose, a finite element model (FEM) of the structure
is developed and calibrated with reference to the dynamic characteristics of the
structure identified through ambient vibration measurements (Shahidi et al. 2015a).
The updated model is then used to study the behavior of the structure during 2011
Virginia earthquake to explain the potential causes of the observed damage following
this event. Finally, a fragility analysis is performed to study the probability of

occurrence of similar structural and non-structural damage states in the future.

The focus of this chapter is the causes of damage to the shaft of Monument
during Virginia earthquake as well as the possibility of damage to the shaft in the
future. While the effect of top section of the structure -which is called pyramidion- on
overall dynamic behavior of the Monument is included in the FEM, this section is not
modeled in detail due to lack of available information for modeling as well as interior
access for sensor deployment and structural identification of such a complicated
system. Wells et al. (2015) presents a vulnerability assessment on the Monument,
where pyramidion section was modeled in more details; however, the FEM developed

in that study was not validated with the vibration characteristics of the structure, and

89

www.manaraa.com



vibration periods appear to deviate from measured vibration periods presented in this

chapter.

5.1. Washington Monument: Structural Description

This section briefly describes the construction history and structural details of
the Washington Monument. Construction of this structure was completed in two
phases with a two-decade suspension due to lack of funding and the occurrence of the
Civil War.

During the period of 1848 to 1856 a 23.3 ft. (7.1 m) deep stair stepped pyramid
foundation having a square base with 80 ft. (24.4 m) long sides was constructed of
blue gneiss. Marble and bluestone masonry walls that were 55.5 ft. (16.9 m) wide and
15 ft. (4.57 m) thick at the ground level were raised to about 156 ft. (47.5 m).

During the period of 1879 to 1884 a second phase of construction occurred
involving the strengthening of the original foundation using a system of tunneling and
filling with concrete. The new foundation with a base of 126 ft. 5.5 in. (38.5 m) long
at each side and a depth of 36 ft. 10 in. (11.2 m) fully encased the primary foundation
in concrete (John Milner Associates, Inc. 2004). Construction of walls was resumed
by first reducing them to a height of 150 ft. (45.7 m), and then rising them to the 500
ft. (152.4 m) level to create a shaft. These walls are 34.5 ft. (10.5 m) wide and 1.5 ft.
(0.46 m) thick at the top, are made of marble and granite below the 450 ft. (137.2 m)
level and marble from the 450 ft. (137.2 m) to 500 ft. (152.4 m) level. Finally, the
pyramidion section was built from 500 ft. (152.4 m) to 555.4 ft. (169.3 m), making the

height of the Monument approximately ten times its baseline dimension. Figure 5.1
90

www.manaraa.com



shows vertical and horizontal sections of this structure based on a historic blueprint
(Historic American Engineering Record 1986). This historic blueprint provides some
information about the inner structure of the Monument, which consisted of horizontal
platforms and staircases located at every ten feet (3.05 m) along the height of the
structure, vertical columns supporting the platforms and staircases, and an elevator
shaft which runs through the center of the Monument. More detailed blueprints of the
interior structure (Oechrlein and Associates Architects 1993) show eight columns,
running vertically over the height of the Monument (See Figure 5.2). These columns
are called “Phoenix Column” and are each a circular pipe column made of iron,

commonly used during the time of this construction.

—-555'5 (1/8)" (169.29 m)

HH - 500 (152.4:m)

MARBLE
STONEWORK
PLAN

(c)

_ 160" (45.72m)
— 150" (48.77 m)

GR

STONEWORK
PLAN

(b)

A 36" 10" (- 11.23m)

Figure 5.1. Washington Monument: (a) vertical section through north and south walls, (b)
horizontal section at 180 ft. (54.9 m) level, and (c) horizontal section at 480 ft. (146.6 m) level
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Figure 5.2. Detailed interior structure of the Washington Monument. (a) 150 ft (45.7 m)
level and (b) 160 ft (48.8 m) level (Oehrlein and Associates Architects, 1993) Note: Gray circles
represent vertical iron Phoenix columns (Note: 25’ = 7.6 m and 31°-5 %2 = 9.6 m)

5.2. Post-earthquake Assessment of the Washington Monument

The Washington Monument suffered damage during the 2011 Virginia
earthquake causing it to be closed to the public until repairs could be completed
(planned for early 2014). The main types of damage observed in the Monument were
cracking and spalling of the exterior stone. Cracking and spalling occurred over the
entire height of the structure, with a larger density of cracking occurring in the
pyramidion as well as the upper section of the shaft around 450 ft. (137.2 m) level.
Figure 5.3 shows examples of cracking in the marble pyramidion panels. The crack

shown in Figure 5.3(a) is approximately 4 ft. 4 in. (1.32 m) in length and 7 in. (0.18
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m) deep, and cuts through the entire depth of the marble panel. Figure 5.3(b) shows a
close-up view of cracking of a previously repaired crack in a pyramidion panel.

Examples of the observed spalling are provided in Figure 5.4, where Figure
5.4(a) displays spalling of the corner of a marble pyramidion panel and Figure 5.4(b)
shows a complex spall at a previously repaired corner.

It should be noted that some of the observed damage had been documented in
previously published historic assessment reports and did not necessarily occur during
the 2011 Virginia earthquake. In order to investigate this issue, Figure 5 presents a
timeline of the documented condition surveys of the Washington Monument. Figure
5.5(a) shows the condition of the exterior stones of the Monument in 1934 (John
Milner Associates, Inc. 2004); where the spalling was more severe below the 150 ft.
level of the shaft. Figure 5.5(b) displays the results of a crack survey on the exterior of
the Washington Monument published in 1993, which shows two main categories of
cracking on all faces of the Monument: (1) lower level cracks, running between the
160 ft. (48.8 m) and 234 ft. (71.3 m) levels, and (2) the upper level cracks, above the
450 ft. (137.2 m) level (Oehrlein and Associates Architects 1993). Figures 5.5(c) and
5.5(d) respectively, show vertical cracking above the 150 ft. (45.7 m) level (west
elevation) and 420 ft. (128 m) level (inside) the Monument, documented in 2004 (John
Milner Associates, Inc. 2004). Figures 5.5(e), (f) and (g) are from the post-earthquake
assessment of the Washington Monument performed by Wiss, Janney, Elstner
Associates, Inc. (2011). These figures show the loss of mortar in a vertical joint above
the 450 ft. (137.2 m) level, the cracking of a previously repaired vertical joint on the

west elevation and deep spalling on the west elevation near the pyramidion. Finally,
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Figure 5.5(h), published in The Washington Post (July 9, 2012), shows the damaged
masonry stones of the Monument on its four elevations. These observations from the
timeline imply that the 2011 Virginia earthquake-induced damage on the Washington
Monument is most likely on the pyramidion and upper as well as the middle levels of

the masonry shaft.

(b)

Figure 5.3. Cracking in pyramidion of the Washington Monument. (a) A newly developed
crack on the west face of the pyramidion (b) Additional cracking along a historic crack (Wiss,
Janney, Elstner Associates, Inc., 2011)

(b)

Figure 5.4. Spalling of pyramidion panels of the Washington Monument: (a) North face, (b)
Northeast corner (Wiss, Janney, Elstner Associates, Inc., 2011)
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Figure 5.5. Timeline of the Washington Monument condition survey

5.3. Structural Modeling

This section describes the procedure adopted in this study to create the finite
element model of the structure. In the analytical modeling of Washington
Monument, like any other structural systems, a number of assumptions are made,

particularly in terms of material properties. Hence, the calibration of the model with
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the vibration characteristics of the structure from field testing is essential prior to

deriving any conclusions regarding the causes of the damage due the earthquake.

Information obtained from the blueprints of the Monument was used to construct
a 3D finite element model of the structure using the computer program SAP2000
(Computer and Structures, Inc. 2010). The overall dimensions used for the exterior of
the Monument were a height of 500 ft. (152.4 m) from the base to the bottom of the
pyramidion with baseline dimensions of 55 ft. 6 in. (16.9 m). The interior dimensions
were 25 ft. (7.6 m) by 25 ft. (7.6 m) from the base up to the 150 ft. (45.7 m) level
where they expand linearly to 31.5 ft. (9.6 m) by 31.5 ft. (9.6 m) at the 160 ft. (48.8 m)
level and continue up to the 500 ft. (152.4 m) level. The wall thickness of the structure

varied from 15 ft. (4.6 m) at the base to 1.5 ft. (0.46 m) at the top.

This study is primarily concerned with the modeling of the Washington
Monument shaft, and thus the details of the pyramidion section were not included in
the model. However, its effect was modeled as a distributed vertical gravity force at
multiple locations from the 470 ft. (143.3 m) level (where the panels that support the
pyramidion are integrated into the shaft’s walls) to the 500 ft. (152.4 m) level, adding
up to the estimated weight of the pyramidion. Choosing the dead load as the source to
define the nodal masses for the dynamic analysis, the corresponding pyramidion mass

was added to the nodal lumped masses obtained from the solid elements in the FEM.

As shown in Figure 5.1 the outer walls of the Monument are constructed from a

combination of marble and granite. Therefore, in the model, an average of the material
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properties of these two types of stone was used. Table 1 shows the range of values for
the modulus of elasticity and unit weight of granite, marble, and iron. 45 GPa and 85
GPa were used as lower and upper bounds of the modulus of elasticity of the stone and
165 pcf (25.9 kN/m?) for its unit weight. The material model for iron was defined
using 190 GPa and 210 GPa as lower and upper bound values, and 485 pcf (76.2

kN/m?) unit weight.

The finite element model of the masonry shaft was constructed using 3D solid
elements. In order to ensure the accuracy of the model, different meshes were
developed by increasing the number of elements in each model (shown in Figure 5.6).
Amongst these, the FEM with 5,600 solid elements (shown in figure 5.6(d)) was
chosen since using a finer mesh of elements would change the natural frequencies of
the model less than 0.1%. Phoenix columns were modeled with beam elements
defined with pipe section properties. In order to include the effects of the stairs and
platforms, diaphragm constraints are assigned to the inner nodes of the shaft at each

ten foot level.
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Figure 5.6. FEMs of the masonry shaft with (a) 784, (b) 1456, (c) 2800, (d) 5600, and (e) 11200
solid elements

The foundation was modeled as a lumped mass located at its center of mass and
a group of uncoupled springs at the base of the foundation to represent the compliance
of the sub-structure with respect to translation and rotation about all three principal
directions of the model. The stiffness of these springs were calculated according to
“Seismic Rehabilitation of Buildings” (FEMA 356). In this method, the foundation is
assumed rigid with respect to the supporting soil, and hence the uncoupled spring
model represents the stiffness of the surrounding soil. The equivalent spring
coefficients are found based on the dimensions of the footing and effective shear
modulus of the underlying soil. In this procedure, values for the unit weight and
Poisson ratio of the soil were respectively assumed as 17 kN/m?® and 0.2, and the
average measured shear wave velocity of 1274.3 ft/sec (388.4 m/sec) of the soil strata

to the base of foundation were used. Correction factors are applied in order to consider
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the effect of the soil embedment on the foundation stiffness. Table 5.2 summarizes the

stiffness of the springs used to model the sub-structure.

Table 5.1. Material properties of stone and iron

Elastic modulus

Elastic modulus

Unit weight Unit weight

Material .
(GPa) (ksi) (b/f)  (N/m’)
granite 40 - 70 5,801 - 10,152 168 26.4
marble 50 -100 7,241 - 14,503 160 25.1
iron 190-210 27,557-30,458 485 76.2
Table 5.2. Description of the foundation springs
Spring Degree of freedom Stiffness Unit Stiffness Unit
KX Translation along X-axis 2.9322E+06 4.2806E+07
KY Translation along Y-axis ~ 2.9322E+06 Kips/ft  4.2806E+07  kN/m
KZ Translation along Z-axis 2.4159E+06 3.5268E+07
KXX Rocking about X-axis 9.2632E+09 1.2552E+10
KYY Rocking about Y-axis 9.2632E+09  Kips.ft/rad 1.2552E+10 KkN.m/rad
K77 Torsion about Z-axis 1.9532E+10 2.6467E+10

5.4. Parametric Study

In order to consider the uncertainty associated with the adopted modeling

approach, as well as the impact of foundation modeling, different cases were studied

by permutation of the material properties of the structure as well as the stiffness of the

foundation springs. The average of the lower and upper bounds of elastic modulus of

granite and marble were used as the lower and upper bound values of the modulus of

elasticity of the stone throughout the shaft. Therefore, the lower bound of the stone

modulus of elasticity was assumed to be equal to 45 GPa (average of 40 GPa and 50
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GPa), and a value of 85 GPa (average of 70 GPa and 100 GPa) was used as the upper
bound. The lower and upper bound values of the foundation stiffness were established
using a factor of 0.5 and 2 to the stiffness calculated based on FEMA 356 to account
for the uncertainty associated with the modeling of the foundation (FEMA 2000). To
this end, twelve different cases of FEMs were studied where the first six cases are
based on estimated lower and upper bound values for material properties and
foundation stiffness, and the last six cases are based on assumption of average
elasticity moduli for stone and iron, and foundation stiffness having values shown in
Table 5.2.

In Case (1) the modeling of the foundation is not considered, and the iron and
stone in the super-structure were modeled using the upper bound value of the moduli
of elasticity given in Table 1. In Cases (2) and (3), upper and lower bound values of
the foundation stiffness were considered, respectively, while the super-structure
material properties are the same as that in Case (1). Three other permutations are made
by assigning the lower bound moduli of elasticity to the masonry shaft and the
Phoenix columns to create Cases (4), (5) and (6). In Case (4) the super-structure is
modeled with the lower bound value of the material properties and is fixed at the
ground level. In Cases (5) and (6), the lower bound values for the material properties
of the super-structure are used; however, the foundation is modeled with upper bound
(Case 5) and lower bound (Case 6) values. Case (7) is created by assigning average of
lower and upper bound values of the moduli of elasticity (65 GPa) to stone and iron
without including the foundation in the model. In Cases (8), foundation springs

(having the values shown in Table 2) are added to this model. Case (9) and (10) are
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created to study the effect of uncertainty in foundation stiffness when the super-
structure is modeled with average of the bounds of the material properties. Finally, in
Case (11) and (12) upper and lower values for the material properties of the super-
structure are used, while foundation springs are modeled with values tabulated in

Table 5.2. Table 5.3 summarizes the modeling assumptions of this parametric study.

Table 5.3. Description of the parametric study

Super-structure material
properties
Case (1) maximum moduli of elasticity foundation was not modeled
Case (2) maximum moduli of elasticity maximum estimated stiffness
Case (3) maximum moduli of elasticity minimum estimated stiffness

Sub-structure stiffness

Case (4) minimum moduli of elasticity foundation was not modeled
Case (5) minimum moduli of elasticity maximum estimated stiffness
Case (6) minimum moduli of elasticity minimum estimated stiffness
Case (7) average moduli of elasticity = foundation was not modeled
Case (8) average moduli of elasticity from TABLE 2

Case (9) average moduli of elasticity = maximum estimated stiffness
Case (10)  average moduli of elasticity minimum estimated stiffness
Case (11) maximum moduli of elasticity from TABLE 2

Case (12) minimum moduli of elasticity from TABLE 2

Tables 5.4 and 5.5 present the results of modal analysis of these twelve cases.
These tables show that the structural characteristics change extensively with the
permutation of the material properties and the foundation stiffness. Additionally,
modeling the foundation significantly affects the period and shape of the structural

vibration modes in the model.
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Table 5.4. Periods of vibration and description of the mode shapes, FEM cases 1-6

Case (1) Case (2) Case (3) Case (4) Case (5) Case (6)
Mode

number P M. D. P M. D. P M. D. P M. D. P M. D. P M. D.

0.809 trans-Y 1.014 trans-Y 1.495 trans-Y 1.112 trans-Y 1.266 trans-Y 1.667 trans-Y
0.809 trans-X 1.014 trans-X 1.494 trans-X 1.112 trans-X 1.265 trans-X 1.667 trans-X
0.218 trans-Y 0.288 trans-Y 0.414 axial 0.300 trans-Y 0.359 trans-Y 0451 trans-Y
0.218 trans-X 0.288 trans-X 0.372 trans-Y 0.300 trans-X 0.359 trans-X 0451 trans-X
0.116 torsional 0.211 axial 0.372 trans-X 0.159 torsional 0217 axial 0417 axial
0.099 trans-Y 0.146 trans-Y 0.216 trans-Y 0.136 trans-Y 0.175 trans-Y 0.246 trans-Y
0.099 trans-X 0.146 trans-X 0.216 trans-X 0.136 trans-X 0.175 trans-X 0.246 trans-X
0.073 axial 0.120 torsional 0.134 torsional 0.100 axial 0.162 torsional 0.172 torsional
0.058 trans-Y 0.097 trans-Y 0.114 trans-Y 0.080 trans-Y 0.117 trans-Y 0.148 trans-Y
0.058 trans-X 0.097 trans-X 0.114 trans-X 0.080 trans-X 0.117 trans-X 0.148 trans-X
P: Period (sec)

M. D. : Mode Discription

O 0 N N N R W N =

—_
(=}

Table 5.5. Periods of vibration and description of the mode shapes, FEM cases 7-12

Case (7) Case (8) Case (9) Case (10) Case (11) Case (12)
Mode

number P M. D. P M. D. P M. D. P M. D. P M. D. P M. D.

0.925 trans-Y 1.272 trans-Y 1.107 trans-Y 1.556 trans-Y 1.193 trans-Y 1.409 trans-Y
0.925 trans-X 1.271 trans-X 1.107 trans-X 1.556 trans-X 1.193 trans-X 1.409 trans-X
0.250 trans-Y 0.354 trans-Y 0.315 trans-Y 0.415 axial 0.324 trans-Y 0.399 trans-Y
0.250 trans-X 0.354 trans-X 0.315 trans-X 0.402 trans-Y 0.324 trans-X 0.399 trans-X
0.132 torsional 0.296 axial 0.213 axial 0402 trans-X 0.295 axial 0298 axial
0.113 trans-Y 0.187 trans-Y 0.157 trans-Y 0.229 trans-Y 0.176 trans-Y 0.203 trans-Y
0.113 trans-X 0.187 trans-X 0.157 trans-X 0.229 trans-X 0.176 trans-X 0.203 trans-X
0.083 axial 0.140 torsional 0.136 torsional 0.148 torsional 0.125 torsional 0.165 torsional
0.067 trans-Y 0.118 trans-Y 0.105 trans-Y 0.128 trans-Y 0.107 trans-Y 0.134 trans-Y
10 0.067 trans-X 0.118 trans-X 0.105 trans-X 0.128 trans-X 0.107 trans-X 0.134 trans-X
P: Period (sec)
M. D. : Mode Discription

O 0 N AN R W N =

5.5. Ambient Vibration Measurements

In order to minimize the uncertainty in the finite element modeling of the
Washington Monument, field vibration tests were conducted to establish the dynamic

characteristics of the structure and use them as a basis to select the FEM case which
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best represents the actual structure. This section presents the details of

instrumentation, vibration monitoring, and structural identification of the Monument.

Ambient vibration measurement of the Washington Monument was conducted
using a network of 8 sensors and a portable data acquisition system (DAQ) (shown in
figure 5.7). The sensors are single channel accelerometers manufactured by Silicon
Designs, Inc. (model number 2210-002). The DAQ has a 24-bit analog to digital

convertor (ADC), with a quantization resolution of less than 1 pg. The sensors have a

characteristic noise floor of 13 pug /v Hz, which for a signal filtered at 15 Hz translates

to about 50 ug root mean squared (RMS) noise.

Two wired accelerometers were located at each corner of the masonry shaft of
the Monument at the 491 ft. (149.7 m) level to measure the horizontal vibration of the
structure in two orthogonal transverse directions. Figure 5.8(a) shows the layout of
this sensor network and figures 5.8(b) and (c) show sensors Al and A2 attached to the
Washington Monument. Ambient vibrations were measured for over a 60 minute

duration using a sampling frequency of 200 Hz (720,000 samples per channel).

Figure 5.9(a) shows the time history of the data collected at the southwest corner
of the WAMO after removing the unwanted trend due to temperature change caused
by wind and sunshine. This figure shows that the ambient vibration amplitude is
about 300 ug. The collected data are further studied in the frequency domain. Figure
5.9(b) presents the average power spectral density (PSD) of the 8 measured signals

obtained using the Welch method (Welch, 1967). This figure shows distinct peaks of
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the PSD, corresponding to the natural vibration frequencies of the system. The peaks

are distinct and clear, and repeat in data from all sensors.

Figure 5.7. (a) Silicon Designs accelerometer, (b) Portable data acquisition system, (c)
Single channel wired sensors at 491 ft. (149.7 m) level
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Figure 5.8. Instrumentation plan at: (a) 491 ft. (149.7 m) level; (b) and (c) sensors A1 and Az
attached to the southeast corner of the Monument
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Figure 5.9. Acceleration measured through sensor Ai: (a) detrended time history, and (b)
power spectral density

5.6. Modal Parameter Identification

Modal parameter identification is performed using the output-only Eigen
Realization Algorithm (ERA-OKID). Using a software package developed at Lehigh
University for convenient modal identification of dynamic systems [SMIT or
Structural Modal Identification Toolsuite; Chang and Pakzad (2013)], the optimum
model order was found from the stabilization diagrams (with convergence thresholds
of 5%, 95%, and 10% for frequencies, MAC values (Allemang 2003) and damping
ratios, respectively) and the modal properties were extracted. Figure 5.10 shows the
stabilization diagrams created based on the ambient acceleration signals measured in
the EW and NS directions. In these plots, the identified modal parameters at every
model order are marked if they fall within the pre-specified stability threshold of the

identified modal parameters at the previous model order.

105

www.manharaa.com




Table 5.6 shows the first 7 identified structural modes using the entire data set. It
should be noted that because the sensor deployment was located at only one level of
the WAMO, no spatial information along the height of the structure for the mode
shapes are available, and thus the modal ordinates are used to distinguish between
modes in the two transverse directions and twisting (i.e., torsional modes). Moreover,
since in this project a short-term ambient vibration analysis was conducted, a study of
the effect of environmental factors on the dynamic characteristics of the Monument

was not of primary focus.
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Figure 5.10. Stabilization diagrams in 0-9 Hz frequency range based on the acceleration signals.
PSD—power spectral density; MAC—modal assurance criterion. (a) Measured in east-west (X)
direction. (b) Measured in north-south (Y) direction.
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Table 5.6. Dynamic characteristics of the Monument identified through measurements

Mode number 1 2 3 4 5 6 7

Period (sec) 1.79 1.78 0484 | 0482 | 0319 | 0317 | 0.221

Damping (%) 238 | 1.86 | 094 | 1.07 | 213 | 268 | 179
Modal ordinate ; . - g
elevation: i | 4\
491 ft. (149.7m) || ! h_ 4

Y(NS)
T—)X(ISW)

5.7. Baseline FEM

The parametric study presented earlier showed that among all the cases, the one
with lower bound values for the modeling parameters has the closest periods to the
identified natural frequencies from the ambient vibration measurements. Therefore,
the set of modeling parameters from this case is used to create a baseline FEM in
which the effect of mass of the soil on top of the foundation was also considered. This
model was created using ABAQUS (Dassault Systémes 2013): (1) in order to cross-
validate the previous SAP2000 modeling, and (2) because of its capability to assign
non-linear material model to continuum elements to be able to perform fragility
analysis. A comparison between the ABAQUS and SAP2000 baseline FEMs showed
that these models are in good agreement; less than 1.8% and 6.5% relative difference
exist, respectively, in the first 20 vibration periods and maximum tensile stresses
predicted by the models. Table 5.7 summarizes the modeling parameters of this
baseline model. In order to further minimize the estimation error of the developed

FEM, the uncertainty associated with the modeling parameters are identified, and
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subsequently a systematic search in domain of uncertain model parameters is

conducted.

Table 5.7. Modeling parameters of the baseline FEM

. value value
Modeling parameter (unit) (unit)
. e 672 305
weight of pyramidion (kips) (tons)
i weight of I 0.165 2.64
unit weight of masonry walls
v (kips/ft’) (ton/m’)
. . 6.79E+04 3.08E+04
weight of foundation (Kips) (tons)
. . . 2.31E+04 1.05E+04
weight of soil on top of foundation (kips) (tons)
.. 9.3984E+05 45
elasticity modulus of masonry walls (ksf) (GPa)
stiffness of sub-structure 1.4669E+06 | 2.1414E+07
along horizontal axes (x & y) (kips/ft) (kN/m)
stiffness of sub-structure 1.2084E+06 | 1.7640E+07
along vertical axis (z) (kips/ft) (kKN/m)
stiffness of sub-structure in rocking | 4.6387E+09 | 6.2855E+09
about horizontal axes (x & y) (kips.ft/rad) (kN.m/rad)
stiffness of sub-structure in twisting | 9.7849E+09 | 1.3259E+10
about vertical axis (z) (kips.ft/rad) (kN.m/rad)
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5.8. FE model updating based on the identified modal quantities

As the first step for model calibration, the model parameters possessing
uncertainty are identified. Model parameters describing the super-structure mass (i.e.,
mass of masonry walls and pyramidion section) and sub-structure mass (i.e., mass of
foundation with soil on top of it) were verified through a comparison with previous
estimations (Casey 1885). Therefore, the main sources of uncertainty in the FEM are
the modulus of the elasticity of the masonry walls of the shaft and the spring model of
the soil. Two separate parameters are considered to calibrate the moduli of elasticity of
the shaft: P1 and P2. These two updating parameters are unitless factors to be applied
to the moduli of elasticity of masonry material shown in Table 1 during the calibration
procedure. P1 is applied to the modulus of elasticity of lower part of the shaft (0-150
ft. (0-45.7 m) elevation) and P2 is applied to the modulus of elasticity of the upper
part of the shaft (150-500 ft. (45.7-152.4m) elevation). This distinction is made
because the lower portion of the structure was constructed three decades earlier than
the upper part. Also, the layout of these two sections are different; where the upper
portion is made of marble and granite stone blocks and the lower portion has a layer of
infill rubble masonry in between the interior and exterior stone wythes. It is expected
then that the lower portion of the shaft will have a lower modulus of elasticity than the
upper portion. The third uncertainty is represented by the parameter P3, where P3 is a
unitless factor to be assigned to the spring model of the soil (shown in Table 5.6) in

the calibration process.
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Two calibration techniques are used to update the selected parameters of the
FEM with reference to the identified vibration frequencies of the structure, and their
results and computational costs are compared. First, a sensitivity-based method 1is
used (Mottershead et al. 2010). In this method, an error function is formulated on the
basis of a truncated Taylor series expansion of the natural periods of the model,
written in terms of the uncertain model parameters and a sensitivity matrix consisting
of first derivatives of the vibration periods with respect to the model parameters.
Starting with an initial estimate for the model parameters, this error function is
iteratively minimized by updating the model parameters and the sensitivity matrix
associated with them. Convergence is achieved when the periods of the updated model
fall within a certain threshold from the identified periods (5% in this study), or when
further updating iterations does not change the updating parameters (a 1% threshold is
used for the average change in the updating parameters in this study). Since
convergence of this method depends on the choice of the initial set of the model
parameters, and also to ensure that the updated model parameters correspond to global
optima of the error function, the model updating process is repeated using several
different initial values for the parameters. Table 5.8 summarizes the initial and final
set of values for model parameters identified with uncertainty as well as their error in

predicting the identified periods.
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Table 5.8. Model updating results using sensitivity method

initial values RMSE! updated values RMSE FEA
Pl P2 P3 (%) Pl P2 P3 (%)  count®
Case 1 0.5 0.5 0.9 10.5 0.56 0.67 0.96 6.3 17

Case 2 1 0.5 0.9 8.4 NC’ NC NC 8.4 12
Case3 0.5 1 0.9 7.8 056  0.68 0.95 6.3 37
Case 4 1 1 0.9 140 056  0.67  0.96 6.3 37
Case5 0.5 0.5 1.4 8.1 0.56  0.67  0.96 6.3 33
Case 6 1 0.5 1.4 11.3 NC NC NC 11.3 8
Case7 0.5 1 1.4 130 056  0.67  0.96 6.3 25
Case 8 1 1 1.4 20.7 056  0.67  0.96 6.3 41

" RMSE: root mean square error in estimating the periods T1 , T3, T5, and T7
*NC: no convergence

* FEA count: number of finite element analysis (FEA) in updating process

In the second calibration method, the GRSMU framework described in the
previous chapters is used for model calibration. In this method, first, polynomial RS
functions are trained to predict the response of the FE simulation in a pre-selected
domain of model parameters. Then, the model updating problem is solved through

minimization of the RS-based objective function shown in Eq. (5.1):

2
min \/ (RS‘,(PI,PZ,PB) -7 J P=1357
PLP2,P3\ Y

i

(5.1)

In this equation, T; represents the i identified natural period (shown in Table 2),
and RS; denotes the RS model predicting the period of the FEM corresponding to T;.
In order to find RS models that are capable of predicting the response of the FE model
throughout the domain of model parameters.The minimization problem is solved using

the “active-set” algorithm (Nocedal and Wright 2006) in a multi-start framework
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starting from all vertices of the selected RS domain, which are in effect the starting
points used in the sensitivity-based procedure described previously. Figure 5.11 shows
the search history of each parameter. It is observed that regardless of the starting
points convergence is achieved, and updated parameters using this method confirm the
results of the sensitivity-based analysis performed earlier. Moreover, the construction
and validation of the RS models are completed with 33 FE analyses. Compared to the
total number of FE runs associated with the sensitivity method (shown in Table 5.8), it

is observed that the cost of the global search of the RS domain of uncertain model

parameters are six times lower than the sensitivity method.
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Figure 5.11. RS-based search history of the updating parameters: (a) P1, (b)P2, and (c)P3
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Figure 5.12 presents four vibration modes of the updated FEM: the first-three
translational modes in a transverse direction, along with the first torsional mode.
Translational modes in the orthogonal transverse direction are not pictured here due to
symmetry. Table 5.9, summarizes the vibration periods of the baseline and updated
FEMs and their errors with respect to the identified vibration periods of the structure
(shown in Table. 2). This table shows that the updated FE model (where P1=0.56,
P2=0.67, and P3=0.96) better estimates the vibration periods of the Monument

compared to the baseline FE model (where P1=1, P2=1, and P3=1).

f—-) X(EW) l ‘ |

(a) (b) (c) (d)

Figure 5.12. Vibration modes of the updated ABAQUS model, periods: (a) 1.874 sec, (b)
0.515 sec, (c) 0.289, and (d) 0.213 sec
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Table 5.9. Comparison of the estimation error of FE model before and after model calibration
with respect to the identified vibration periods from measurements

Mode number 1 3 5 7

P: Period (sec) E: Error (%) P(sec) E(%) P(sec) E(%) P(sec) E(%) P(sec) E(%)
baseline FEM 1.632 8.827 0.449 -7.231 0.260 -17.981 0.171 -22.624
updated FEM 1.874 4.693 0.515 6.488 0.289 -8.896 0.213 -3.710

5.9. Virginia Earthquake (2011)

Recorded ground accelerations during the 2011 Virginia earthquake were used to
investigate the behavior of the monument during this event. For this purpose, ground
shaking at the foundation level (FL) of the Washington Monument was estimated
based on the USGS recording of this earthquake in Reston, VA (Reston Fire Station
25). This choice is justified because this station is the closest USGS station to the site
(about 31 km away) and Reston and Washington, DC have comparable distances with
respect to the epicenter of the earthquake, Mineral, VA (both located northeast of
Mineral, VA about 122 km and 130 km away, respectively). Shear wave velocity
profiles at these two sites were measured by USGS and used to estimate the ground
shaking at the site of Washington Monument during the earthquake based on the
recorded ground shaking at Reston. These measurements are shown in Figure 5.13,
and are aggregated with the estimated shear wave velocity at the deeper levels through

bedrock.

The bidirectional (E-W and N-S) ground motions recorded at the Reston station
were rotated into path-parallel and path-normal components along the source-to-

recording site orientation (Mineral-Reston). These components at the ground surface
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(GS) were then deconvoluted to the hard rock level at Reston using the shear wave
velocity profile at the station’s site (shown in figure 5.13(a)). Hard rock motions in
Reston were considered to be representative of the hard rock motions at the Monument
site due to their proximity and respective distances to the earthquake source. Hard
rock motions at the base of the Reston profile were rotated into (Mineral-Monument
site) path-parallel and path-normal components. Site response analysis was then
performed using Deepsoil (Hashash et al. 2012) to propagate the rotated rock motions
up to the FL at the Washington Monument site using the velocity profile at the site
(shown in figure 5.13(b)). Finally, an angular transformation was used to rotate the
estimated FL. and GS motions into the E-W and N-S directions to be applied to the
base of the FEM. Figure 5.14 shows the time history and response spectrum of the GS

and FL ground motions in the E-W and N-S directions, respectively.
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Figure 5.13. Shear wave velocity profile of the soil strata at (a) Reston (b) Washington Monument
site
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5.10. Behavior of the Monument during 2011 Virginia Earthquake

Time histories of the FL acceleration in the N-S and E-W directions are applied
bidirectionally to the base of the calibrated FEM. Linear modal time history analysis
are performed using a time step of 0.005 sec and zero initial conditions, and a 2%
damping ratio for the structure is assumed which is in the range of the damping ratios
obtained from the structural identification (shown in Table 5.7). This is also consistent
with the identified damping ratios of masonry structures reported in the literature (De
Sortis et al. 2005; Gentile and Saisi 2007). Time histories of E-W components of
displacement and acceleration predicted by the calibrated FEM during the Virginia
earthquake at the observation level (at 500 ft. (152.4 m)) are shown in Figure 5.15(a).
This figure indicates a high range of acceleration occurs at this level, where the
acceleration at the observation level are amplified by about 10 times compared to the
maximum accelerations at the ground level. The distribution of maximum stresses in
the vertical direction on the outer surface of the shaft is shown in figure 5.15(b). This
figure shows the envelop of tensile stresses along the vertical direction of the shaft due
to the combined effect of the self-weight of structure and bidirectional ground
motions. The color scale in the figure indicates the magnitude of the stresses where the
highest tensile stresses are shown in dark blue and white represents zero tensile stress.
The tensile stresses are highly concentrated around the 350 ft. (106.7 m) level. These
tensile stresses are significantly smaller than the reported tensile strength of masonry
stone, but they are at the level of the tensile strength of the grout material. Table 5

summarizes the reported tensile and compressive strength of these materials (ASTM
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2010 and 2011). The maximum compressive stress throughout the entire structure (-
72.1 kst (-3.45 MPa)) is also considerably smaller than the reported compressive
strength of marble, granite, and grout as shown in Table 5.10. Therefore, the
concentration of the maximum tensile stresses explains the cracking damage observed
around these levels of the Monument shaft in terms of the mortar loss and re-cracking

of the previously repaired cracks.
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Figure 5.14. Accelerograms and response spectra (2% damping)
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Figure 5.15. FEM predicted structural response during Virginia earthquake: (a) history of
acceleration and displacement at observation level (E-W direction), (b) distribution of maximum
tensile stresses (ksf) in vertical (Z) direction

Table 5.10. Compressive and tensile strength of masonry materials

Masonry Tensile strength Compresive strength
material ksf MPa ksf MPa
marble 144 6.9 -1080 -51.6
granite 216 10.3 -2736 -130.8
grout * -288 -13.8

* tensile strength of the grout is assumed to be about 10% of
its compressive strength

5.11. Fragility Study

This section presents a fragility study to investigate the possibility of damage to
the Washington Monument in future earthquake scenarios. The fragility function (Fr

in Eq. (5.2)) provides the probability of occurrence of a damage state conditioned on a
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seismic intensity measure (SIM) (e.g., peak ground acceleration, spectral acceleration

at the fundamental period of vibration, etc.):

F(SIMy=F(SIM =P8, 26 SIM) (5.2)

where 6 , and &, denote the seismic demand and structural capacity,

respectively, associated with the limit state LS, both in terms of a specific engineering
demand parameter (EDP) (e.g., interstory drift, peak floor acceleration, etc.). This
function is commonly modeled as a two-parameter lognormal cumulative distribution

function expressed by Eq. (5.3) (Shinozuka et al. 2000; Ellingwood et al. 2007):

In(SIM / SIM )

Fo(SIM) = ®[ 5

] (5.3)

In this equation, SIM , is the median structural capacity associated with the

limit state LS, @ denotes the standard normal cumulative probability function, and

B.., 1s the combined standard deviation reflecting the overall (aleatoric and

epistemic) uncertainty in the fragility analysis. In effect, two sets of information are
required for estimating the parameters of this lognormal fragility function: (1)
probabilistic seismic demand model as a function of selected SIM, and (2) probability

characteristics of the structural capacity associated with the limit state LS.

The probabilistic seismic demand model in this study is a power function (shown
in Eq. (5.4)) relating the selected structural demand to the SIM. This model was
previously used for the fragility analysis of other types of structures such as reinforced
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concrete frames (Celik and Ellingwood 2010) and steel frames (Cornell et all 2002,

Kinali and Ellingwood 2007).
6, =aSIM "¢ (5.4)
In logarithmic form this model can be written as
In(6,) =lna+bIn(SIM ) +In (€) (5.5)

Constants a and b are estimated using the least squares technique and a dataset
generated from a non-linear time history analysis using an ensemble of earthquakes.

In(g) is the random error component in the regression analysis. In this model the
errors are assumed to be uncorrelated and follow a zero mean Gaussian distribution

(Montgomery et al. 2004). Therefore, ln(9D|SIM) follows a normal distribution

(Montgomery et al. 2004), where
In(8,| SIM) ~ N(Ind +b1In(SIM), 0., ) (5.6)

In Eq.(5.6), @ and b are the least square estimates for a and b, and O ¢ 18 the

standard deviation of the error of the regression model shown in Eq. (5.6).

In order to obtain the seismic intensity measure associated with the performance
limit state, the model established in Eq. (5.4) can be used. Therefore, ln(HLS|SIM s)

follows a normal distribution as shown in Eq. (5.7)
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In( 84 SIM, ) ~ N(Ina+bIn(SIM, ), B,;) (5.7)

B, (the logarithmic standard deviation of 6, ) is usually determined from an

existing database (Ellingwood and Tekie 2001).

Having the probabilistic models of demand and capacity, Eq. (2) can be written

as
F(SIM)= P, 26, SIM)=(Ing, ~InG,; 2 SIM) (5.8)

Substituting the Eqs. (5.6) and (5.7) into Eq. (5.8) reformulates the fragility

function as

bIn(SIM ) = bIn(SIM ;)
\/a-lné:2 + BLS2

In(SIM / SIM ;)
V@2 + BB

Fo(SIM) = ®[ 1=9[ (5.9)

The quantity S ,, is typically included in the standard deviation of this fragility

function to represent the epistemic uncertainty associated with the error in the
structural modeling (Kinali and Ellingwood 2007). Therefore, the logarithmic standard

deviation of the fragility function shown in Eq. (3) is written as

By =00+ BB + B, (5.10)
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5.11.1. Generation of hazard level compatible earthquake ensembles

As stated before, the first step in the fragility analysis is to establish a
probabilistic demand model (shown in Eq. (5.4)). For this purpose, the FEM of the
structure is analyzed using a suite of ground motions representing future potential
ground shaking at the site of the structure. In this study, two sets of 22 bidirectional
bedrock motions are utilized at the Design Basis Earthquake (DBE) and Maximum
Credible Earthquake (MCE) hazard levels. These bedrock motions were originally
developed by McGuire et al. (2001) as a set of 151 tri-dimensional bedrock motions to
represent the CEUS ground shaking. Setting the DBE and MCE uniform hazard
response spectrum (UHRS) developed by USGS at the bedrock level of the
Washington Monument (Site Class A) as the target spectrum, the geometric mean of
the horizontal components of these bedrock motions are uniformly scaled to match the
target, and 22 sets of motions with the least overall error between the scaled spectra
and the target spectrum (over periods smaller than 2 sec) are selected for the structural
fragility analysis in this study (Chu et al. in preparation). A site response analysis is
subsequently performed using Deepsoil (Hashash et al. 2012) to propagate the bedrock
motions to the foundation level (FL) and ground surface (GS) using the shear wave
velocity profile of the site (shown in figure 5.13(b)). Figure 5.16 shows the response

spectra of the generated ground motions at DBE and MCE hazard levels.
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Figure 5.16. Acceleration response spectra (5% damping) (a) DBE hazard level (b) MCE
hazard level

5.11.2. Description of the ABAQUS non-linear FE model

In order to study the fragility of the Monument, the updated ABAQUS FEM
described above is modified to consider the fragility of the grout and previously
damaged sections of the shaft tension and compressive failure during future
earthquakes. Therefore, an elasto-plastic material model with the appropriate tensile
and compressive strengths is introduced for the solid elements of the model of the
shaft. For this material model, cracking in tension is governed by the maximum
principal stress, while in compression maximum Von Mises criteria governs the
maximum compressive stress. In this study, the maximum uniaxial tensile strength
was set to 50% of the assumed tensile strength for the grout (see Table 5.10) to reflect
the deteriorated state of the grout based on the post-earthquake assessment report
(Wiss, Janney, Elstner Associates, Inc. 2011). The maximum uniaxial compression
strength is set to the minimum of compressive strength of materials shown in Table
5.10. However, this limit did not govern the material behavior in any of the MCE and
DBE earthquake scenarios. Non-linear time history analyses are performed for each

FL ground motion pair using the Hilber-Hughes-Taylor direct integration method (o=-
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0.05) with a 0.005 sec time step. Rayleigh proportional damping was used in the

model based on 2% damping in the 2" and 3™ translational modes.

5.11.3. Acceleration-based Fragility analysis

The analysis results showed that during the Virginia earthquake the acceleration
at the observation level is amplified by about 17 times compared to the input
acceleration at the foundation level (i.e., FL). This high amount of acceleration
amplification may explain the cause of the observed damage at the upper sections of
the shaft, pyramidion, and fallen debris near the observation level following this
earthquake. This section concentrates on the fragility of the “acceleration-sensitive”
non-structural components (e.g. mechanical systems, elevator, lighting fixtures, etc.) at

the observation level.

In this study, the peak floor acceleration response at the observation level (500
ft. (152.4 m)) and average (2% damping) FL spectral acceleration of the first three
translational modes in E-W and N-S direction (Save) are selected as EDP and SIM,
respectively. Figure 5.17(a) shows the EDP database resulted from the non-linear time
history analysis of the FEM at the DBE and MCE hazard levels, as well as the
developed probabilistic demand model. This demand model along with the median

capacity (6, ) is used to create fragility functions. In order to improve this estimation,
an interval associated with a selected statistical confidence level can be used. Since the
demand model of Eq. (5.5) is developed with the assumption that In(&)is normally

distributed the t-distribution is used to construct a 100(1-a)) percent confidence interval
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(CI) for E(ln(9D|SIM)), where a is the level of significance in the confidence interval

and shows the rejection regions under the probability distribution function associated
with ln(5D|SlM ). Figure 5.17 (b) shows the demand model predicted with the 95%

confidence. Also shown on this plot is the 95% CI associated with predicting

observations outside the range of datasets used in the regression analysis.

Peak floor acceleration limits defined in HAZUS (FEMA 2012) for non-
structural acceleration-sensitive components of “Pre-Code” structures are adopted
here. On this basis, four limits for progressively increasing non-structural damage are

defined: “Slight” damage (6, =0.2g), “Moderate” damage (&, =0.4g),
“Extensive” damage (6, =0.8g), and “Complete” damage (8,; =1.6g). The three

contributors to the damage variability are obtained as follows: (1) record-to-record

variability is accounted for by using a point estimator for o, ,, from the regression of

the demand model presented in figure 5.17; (2) as HAZUS suggests, [, is set to 0.6

to consider the uncertainty in the damage state thresholds; and, (3) uncertainty
associated with the capacity estimation using the updated FEM is also considered by
setting B, to 0.1. Figure 5.18(a) shows the fragility curves created for acceleration-
sensitive components at the observation level of the Washington Monument based on
median EDP. Figure 5.18(b) shows the fragility regions created on the basis of the
confidence intervals discussed above. For the “Moderate” and “Extensive” damage
states, the 95% CI associated with estimation of median EDP is used. However, for

the “Slight” and “Complete” damage states, where the threshold falls outside of the
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range of the dataset generated with DBE and MCE earthquake ensembles, the
confidence interval for predicting observations outside the range of regression data is
utilized to create the fragility regions. It is observed that with this method, more
uncertainty is considered in estimating the fragility of the structure in the “Complete”
damage state. Figure 5.18 indicates that for the Virginia earthquake with a 0.076 g
average FL spectral acceleration at the first three translational modes of the updated
FEM (spectral acceleration corresponding to first three translational modes in X(E-W)
direction are 0.008g, 0.189¢g, and 0.168g, and spectral acceleration corresponding to
first three translational modes in Y(N-S) direction are 0.003g, 0.062g, and 0.025g),
there is a 85% to 98% probability of reaching the “Slight” damage state, 55% to 75%
probability of reaching the “Moderate” damage state, and a low probability (less than

25%) of reaching the “Extensive” and “Complete” damage states.
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Figure 5.17. Acceleration-based demand model: (a) generated dataset and regression
model; (b) 95% estimation and prediction confidence level
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Figure 5.18. (a) Acceleration-based fragility curves; (b) acceleration-based fragility regions
(CI=95%)

5.11.4. Stress-based Fragility analysis

Since cracking under tensile stresses is one of the main damage modes of
masonry structures, the fragility of the Washington Monument associated with crack
initiation and propagation is also investigated. For this purpose, three limit states are
defined as follows: (1) crack initiation; (2) crack propagation to more than 25% of the
outer surface of the masonry shaft (representing the “Moderate” damage); and (3)
crack propagation to more than 50% of the outer surface of the masonry shaft
(representing the “Extensive” damage). The cracked area in each earthquake scenario
is obtained by examining the area on the outer surface of the FEM to determine where
a residual plastic strain exists at the end of each non-linear time history analysis. Table
5.11 presents the probability of occurrence of these limit states at the DBE and MCE

hazard levels. It is observed that for a DBE level earthquake scenario, there is high
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probability associated with crack initiation; however, it is unlikely that the cracking
extends to a moderately large area on the outer surface of the Monument. For a MCE
level event on the other hand, the probability of crack initiation as well as the
extensive crack propagation is high. For the Virginia earthquake with a 0.076 g
average FL spectral acceleration at the first three translational modes of the updated
FEM, the probability of crack initiation is high, whereas the probability of reaching
the “Moderate” and “Extensive” damage state is low. This is consistent with the

observations from damage reconnaissance reports following the Virginia earthquake.

Table 5.11. Probability of occurrence of limit states associated with cracking

Hazard Probability of exceedance Ret@n median Probability of occurrence of limit state.
. period (1) crack  (2) moderate  (3) extensive
Level in 50 years Save (8 0.7
(years) initiation crack crack
DBE 10% 475 0.088 82% 23% 0%
MCE 2% 2475  0.190 100% 100% 59%

5.12. Summary and conclusions

This chapter explores potential causes of damage to the Washington Monument
during the Virginia earthquake as well as the estimation of the probability of
occurrence of similar patterns of damage to this structure during future earthquakes.
For this purpose, a FEM of the Washington Monument is developed using the
ABAQUS computer program. The focus of this study is to investigate the cause of
damage to the shaft of the Monument during the Virginia earthquake as well as the
possibility of damage to the shaft in the future. While the effect of pyramidion section
on overall dynamic behavior of the Monument was included in the FEM, this section

was not modeled in detail due to lack of available information for modeling as well as
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interior access for sensor deployment and structural identification of such a

complicated system.

The modeling primarily focuses on the sub- and super-structure of the outer
masonry shaft of the Monument. In the sub-structure, the total mass of the foundation
and soil on top of it is lumped at its center of mass and a group of uncoupled springs is
used at the base of the foundation to model the compliance of the surrounding soil. In
order to minimize the uncertainty in the modeling procedure, ambient vibration
measurements are used to identify the dynamic characteristics of the structure. The
FEM is then calibrated with reference to the extracted natural periods of the structure.
Due to the lack of recorded ground motions in the immediate Washington, DC area,
ground motions that occurred during the Virginia earthquake at the site of the
Washington Monument are estimated by applying angular transformations and site
response analysis using shear wave velocity profiles of soil layers measured by USGS

to ground surface accelerations recorded in Reston, VA.

A fragility study is also performed in order to estimate the probability of
occurrence of similar types of damage in future earthquakes. Two site-compatible
suites of ground motions at the DBE and MCE hazard levels are generated. A non-
linear FEM is developed to consider the brittle behavior of the grout and sealant
material in tension. Probabilistic demand and capacity models are established, and
fragility intervals associated with a 95% confidence level are developed for four stages

of damage in acceleration-sensitive non-structural components. Moreover, the
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occurrence probability of three damage states associated with initiation and extent of

cracking of grout and repaired masonry materials are established.

The principal findings of this research are as follows:

l. This study highlights the importance of structural monitoring in
providing valuable information about the dynamic characteristics of existing structures
to be used as a basis for reduction of modeling uncertainty.

2. The cross validation of the model calibration techniques reveals that
while sensitivity-based and surrogate-based model updating methods yield the same
results, surrogate-based model calibration requires less computational effort for global
search in the domain of model parameters.

3. Time history analysis of the calibrated FEM of the Washington
Monument using the estimated ground shaking during the 2011 Virginia earthquake,
show high acceleration at the top of the Monument as well as a concentration of
tensile stress at the upper levels of the masonry shaft. These observations correlate
with the damage observed in the pyramidion section and cracking of repaired sections
and loss of mortar in the upper levels of the shaft.

4. The fragility analyses performed indicate the probability of structural
and non-structural damage to this structure in future earthquake scenarios. Fragility
curves are beneficial in establishing the probability of several states of acceleration-
based damage at the observation level based on average spectral acceleration of a

selected earthquake scenario.
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5. The damage states associated with cracking of the grout material also
shows a high probability associated with initiation and propagation of such cracks on
the outer surface of the masonry shaft of the Monument during a future earthquake.

6. The study highlights the critical need for improved recognition and
greater awareness of the seismic vulnerability of constructed facilities and lifelines in

the Central and Eastern United States.
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Chapter 6

Structural damage detection
and localization using multivariate
regression models and two-sample
control statistics

This chapter presents model-free damage identification and localization methods
based on two-sample control statistics. The proposed methodology consists of two
steps: (1) damage feature extraction, and (2) decision making through change point
analysis. Performance of combinations of several damage features, regression models,
and control statistics on a scaled two-bay steel frame instrumented with a dense sensor
array is compared. The acceleration response of the frame recorded from two different
physical states are measured and control charts are used to find the significance of
change between the two. The first state is a baseline (here “healthy”) state of the
structure, and the second is an unknown state. In effect, two sets of data are created
that would be taken from a structure pre- and post- a damaging event (or a regular
maintenance check). Damage features are created based on linear regression
parameters, and are utilized in the control charts to make the distinction, if any,
between an undamaged and an unknown state of the structure. The following sections

describe the damage sensitive features and change point statistics used in this research.
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6.1. Change point analysis using Normalized Likelihood Ratio test

The Normalized Likelihood Ratio test (NLRT) can detect a shift in the mean
and/or variance of a data set. It assumes that there are m independent observations that
are normally distributed with mean p and standard deviation o. If a process is in-
control, at any partition of the data, the two sets would have similar means and
variances. However, if there was a change in the process, the means and variances of
the two subgroups would vary substantially from one another.

As explained in Sullivan and Woodall (1996), the log of the likelihood function for

the first m; observations can be written as

—~2 = 2
_ _ﬁ 27 _ m,0q _ml(xl _H) (6.1)
l= 5 log[2mo©] 257 257

_ 2 . .
Here, x; and @;°, represent the mean and variance of the first m; observations,
while u and o2 represent the population mean and variance. This function can be

maximized to generate /; presented below.

I, = —%log[Zn] - %log[o"\lz] - % (6.2)

This procedure can be repeated for the remaining m, (= m — my) observations to
find the maximum value of the likelihood function, /2. In this way of partitioning the
process into m; and m>, there is an assumption that there is a change in the data at

point m; +1. However, if this were not the case and the process was in-control for all m

observations, the likelihood function would be maximized using X and o2 , the mean
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and variance of all m observations. This would generate /,, the maximum of the
likelihood function for an assumed in-control process. If /, the sum of /; and />, is
much larger than /,, the process is deemed to be out of control. For this reason, the
likelihood ratio test detects the significance of the difference between the two. It is
defined as Irt[m,,m,] = —2(l, — [,;) and has an asymptotic chi-squared distribution

(x?) with two degrees of freedom (Sullivan and Woodall 1996).

This statistics is normalized to create the NLRT with a threshold value of unity. In
normalizing the statistic in this damage detection scheme, any value of the likelihood
ratio for a damage feature that is above one represents an out of control feature. This
can then be correlated to a location on a structure if the damage feature originated
from data taken from a localized sensor network. In order to normalize the statistics, it
is divided by its expected value (E), based on the dimensionality of the observations,
p, and an upper control limit (UCL) based on a desired overall in-control false alarm
probability, o. As explained in Sullivan and Woodall (1996), the in-control expected
value is not the same for all values of m;. If m; and m> are small, the expected value is
larger than when both are the same. Therefore, when the model order is 1, the
expected value can be approximated by simulation or

m1 + mz - 2 +
(my —1D(m, - 1)

E=2 1 6.3)

The test statistics is also normalized using an upper control limit which is usually

set to give a specified in-control average run length. Based on m and p, the upper
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control limit can be approximated. Its value has been tabulated in Sullivan and

Woodall (1996) using Eq. (6.4):

1, 1,
UCL == F'[(1 - w)¥] (6.4)

Here k™ = —4.76 + 3.18Ln(m). F denotes the cumulative distribution function of
a x? distribution with two degrees of freedom. In this implementation, the vector of
damage features is successively tested using NLRT (starting from m;=2, to avoid
numerical instability, through m;=m-2) to detect the timing and location of the

potential structural damage.
6.2. Change point analysis using Student’s t-test

The other change control threshold that is utilized in this dissertation bases on the
Student’s t-test. The two-sample t-test is a common procedure for testing the
differences between the means of two samples (Montgomery and Loftis 1987). There
are three assumptions that this Student’s t-test follows: (1) samples come from a
parent population that is normally distributed, (2) the two sample groups are from
populations with equal variances, and (3) sample observations are independent. The
statistics of this test has N — 2 degrees of freedom (N being the combined length of

the two sample vectors) and is given by

t= —
[1 1 (6.5)
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where the variables X;and X, are the means, n; and n, are the size of the two
samples, and S, represents their pooled standard deviation equal to

o2 =87+ — 1S (6.6)
P (ny +n; —2)

Si and S; are the sample standard deviations.

This method, used for cases in which the variance is assumed to be unchanged, can
be used with linear regression parameters. This is because it represents the realistic
condition when a property of the structure is changed due to damage if the change
does not affect the estimation uncertainty of the damage feature. In this chapter this
two-sample t-test is applied sequentially through the vector of damage features to

identify and localize the structural damage.

Upper and lower control limits (UCL and LCL) for this test are then calculated
using the Student's t inverse cumulative distribution function at a certain confidence

level (1 — w)% and N — 2 degrees of freedom (N = n; + n;) based on Eq. (6.7).

UCL = t(l—%),N—Z

(6.7)

L=ty ,

6.3. Localized Damage Detection Method: Mathematical Models

The damage features studied in this dissertation come from the linear regression

coefficients produced by an algorithm called Influenced-based Damage Detection
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Algorithm (IDDA) developed by Dorvash et al. (2013a and 2013b). These damage
features are shown to be viable ways of detecting damage in a structure because they
are sensitive to the changing properties of a structure. The IDDA algorithm correlates
the response (measured acceleration signals in Dorvash et al. (2013a) and measured
strain signals in Dorvash (2013b)) of a structure at various locations by creating
influence coefficients from a linear regression model based on output of a dense
sensor network. When damage occurs, the relationship between responses changes,
which will be reflected in the influence coefficients and indicate the existence of
damage. The location can then be pinpointed by correlating such data driven damage

features to the location of the sensors.

6.3.1. Single Variate Regression Model

The simplest linear mapping model is the Single Variate Regression (SVR) model.
It relates the acceleration response of one location to another location at the current

time step. This version of the model can be represented using Eq. (6.8)

yi=ay;+p+e (6.8)

which correlates the response at node j to current response at node i through a
with intercept f and error €. Since the effects of previous time steps are removed from
this equation, the intercept (f) is added into Eq. 6.8 to account for the initial
conditions. The influence coefficient « is then used to extract damage feature from the
linear regression model in this study. The derivation and validation of this simplified

mathematical model can be found in Dorvash et al. (2013a) on a scaled beam-column
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connection. Since this damage feature has already been proven to detect and localize
damage in small- and large-scale structural models (Dorvash et al., 2013a and 2013Db),
it is used as a basis for comparison and derivation of the proceeding damage features

discussed in the following sections.

6.3.2. Auto-Regressive Models

The SVR model can be expanded to include more information about the system
from past and present time steps of the structural response. In effect, this Auto

Regressive with Exogenous term (ARX) model can be written as

Q

P
Y + ) @y (n—p) = ) agyi(n—q)+ ) (69
p=1 q=0

where y; and y; are outputs at locations j and i respectively, a;,’s and aiq’s are the
ARX coefficients, £(n) represents the residuals, n is the time index, and P and Q are
orders of the autoregressive and exogenous parts of the ARX model, respectively.

Derivation and validation of this formulation can be found in Yao et al. (2012).

This ARX model can be simplified to just include one location on a structure. This
regression may produce more localized results if only one location is involved in the
model. Acceleration response at the same location in time can be established using an

Auto Regressive (AR) model as

P

yj(n) = Z a,y;(n—p) + &(n) (6.10)
p=1
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In this formulation, y; is the output at location j, a,’s are AR coefficients, &(n)
represents the residuals, n is the time index, and P is the order of the AR model. In
this study, the regression coefficients (a,’s , ojp’s, and aiq’s) are used to generate
damage sensitive features from the AR and ARX linear regression models to be tested

in the change point analyses.

The order of the AR and ARX models must be determined before the influence
coefficients can effectively be used in damage control charts. The accuracy of the two
regression models depends on the selected model orders based on the data from the
localized sensor networks. While higher model orders, in general, deliver more details
of the system and reduce the estimation bias, it is always desired to keep the order at
the minimum level to avoid over-parameterization. One way to establish the model
order is to minimize the Akaike’s Information Criterion (AIC) which is used in

Friedlander and Porat (1984) and Figueiredo et al. (2011) as,

AIC(p) = (L —p) X Ln(SE) + 2p (6.11)
In Eq. (6.11), p is the number of parameters in the AR model and SE is the sum of
the squared regression residuals divided by L — p (L being the total number of data
samples). Once the model order number is found and the AR and ARX coefficients are

regressed, their coefficients are condensed to generate a univariate control statistics.

6.3.3. Collinear Regression Model

The SVR model can also be modified to correlate three locations on a structure

without over parameterizing the system. This model is called the Collinear Regression
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(CR) model. There are many different types of regressors that can be used in CR
models. For this implementation, y; in Eq. 8 is changed to the average of two outputs.
In effect, the mathematical model would be calculated as

Vi = aijkw‘}' p+e (6.12)

Here, an additional location’s acceleration output, y,, can be included to create the
new coefficient a;;; . The effectiveness of CR influence coefficient is analyzed and

compared to the AR, ARX, and SVR model parameters presented above in the

structural damage detection based on change point analysis.
6.4. Localized Damage Detection Method: Damage Features

There are two types of features that are used to test the null hypothesis that the
mean of the two observation samples from different states of the system are equal. The
first of these is a scalar function of the regression coefficients — referred to as Alpha-
based Coefficients in this chapter — obtained from the regression models discussed
above. In cases of the SVR and CR models, the output of this function is the influence
coefficients themselves, whereas for the AR and ARX models, the Mahalanobis
distance is utilized to find a scalar representation of the multivariate regression
coefficients corresponding to a condition of interest and those corresponding to a
reference condition (Mosavi et al., 2012). The Mahalanobis distance D,,(x) can be

computed by using Eq. (6.13)
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Dy () = (x = TS (x — 1) (6.13)

where x is the matrix of the reference regression coefficients with mean p, and S is
its covariance matrix. Once the distances are calculated, these scalar representations of
the influence coefficients are used in the change point analysis.

The second damage feature used in this study is called the Angle Coefficient. This
coefficient measures the angle between regressed lines from two different states of the
system. In other words, for damage detection methods, instead of measuring the
difference in slope between a healthy state line and an unknown state line of a
structure, the angle between the two lines can be compared to detect change as well. In

effect, the Angle Coefficient can be written as

-1 aar+1

— -1 -
I' = cos N AT (6.14)

vl

Here v and v’ correspond to a vector [ —1,a] Tfor an undamaged state and a
vector [ —1,a’] T for an unknown state, respectively. In this formulation, o and o' are
the respective influence coefficients from SVR or CR models. For ARX and AR
regression models (with model order p), v=[-1aa;.. a2p+1]Tand V=

[—1, a1, a5 ...a,]", respectively.

These two sets of coefficients, Alpha-based Coefficients and Angle Coefficients,
are extracted from the acceleration signals measured from a baseline and an unknown
state. They are then tested for a change in their mean using the NLRT or t-test method

discussed in Section 6.1.
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6.5. Test Setup

A two-bay steel tube frame testbed was constructed at the laboratory of Advanced
Technology for Large Structural Systems (ATLSS) at Lehigh University. In this
chapter, this specimen is used to analyze the effectiveness of the damage features
discussed above. This frame was built as a testbed for damage detection, mainly to
represent typical building frames or bridge girders. It has nine interchangeable
sections, 0.2 m in length, that can be changed throughout the frame in order to
simulate damage. These interchangeable sections have different cross sectional
properties than the healthy state (shown in Table 6.1) which correspond to 20%
reduction in member stiffness. In order to simulate a realistic damage scenario, the
length of these switchable members was designed so that a negligible change would
occur in the global behavior of the frame pre- and post- damage. Figure 6.1 shows the

experimental setup used in this study.
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Figure 6.1. Experimental setup: (a) scaled frame (b) switch-out member (c) wired accelerometer

Ll L2 L3 Cl C2 C3 C4 C5 C6 Rl R2 R3

2.29m 3.66 m

O: location of sensor

Figure 6.2. Sketch of the specimen and the location of the introduced damage

In order to collect data, the specimen was instrumented with 21 wired

accelerometers, labeled in figure 6.2 with L, C, or R on left, center, and right portions
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of the frame. During testing, there were a total of 40 runs of data collected. For each
run, the sampling rate was 500 Hz and 1000 samples were recorded so that each test
lasted a total of 2 seconds. The first 20 runs were taken when the frame was in an
undamaged state, where the first 10 tests of this group serve as a known healthy
baseline for comparison throughout this research. The Mahalanobis distance between
these first 10 healthy runs and the next 10 healthy runs creates a baseline distance for
comparison. It was at this point (run 21) that damage was simulated for the second
half of the experiment. For this study, the damage case consists of replacing a healthy
section with one of less stiffness at the location of sensor RS, which corresponds to
less than a 1% change in the lateral stiffness as well as the first three natural
frequencies of the frame. After this section is exchanged, an additional 20 tests were
taken. These tests will serve as the unknown state of the structure after a damaging
event by comparing the Mahalanobis distance between these 20 ‘damaged’ runs and
the baseline distance from the healthy start runs. The results, shown in Section 6,
should detect the timing of the damage after the 20" test and localize it to the right

column of the frame.
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Table 6.1. Geometry of baseline and interchangeable sections

Feature Baseline Sections Interchangeable ‘Damage’ sections
Outer Dimension of Hollow . .
0.05 m (1.97 in) 0.05 m (1.97 in)
Cross Section
Tube Thickness 2.16 mm (0.085 in) 1.65 mm (0.065 in)
Cross Sectional Area 410.57 mm? (0.64 in®) 324.57 mm? (0.5 in%)
Moment of Inertia 162526 mm* (0.39 in*) 130811 mm* (0.31 in*)

There are two sets of data collected, which represent measurements that would be
taken pre- and post- a damaging event or regular maintenance of a structure.
Therefore, it is possible to assume that the structure behaves linearly during data
collections. Additionally, Dorvash et al. (2010) show that the type of excitation used
with IDDA does not affect the detection of damage. In order to dynamically excite the
frame, impact loading is chosen as the excitation method for this implementation. This
excitation is similar to ambient vibration in not imposing any specified excitation
frequency to the frame. The impact amplitude was limited to ensure that the linear
behavior assumption for the experimental frame holds. Therefore, the acceleration
response of frame is recorded while the frame is struck with a hammer on the right
column and the frame freely vibrates on its own. The data from this experiment was
previously used in Nigro et al. (2014) to investigate the performance of IDDA damage
features using a change point framework, where statistics such as univariate
Cumulative Sum (CUSUM), Exponentially Weighted Moving Average (EWMA),

Mean Square Error (MSE), Modified MSE, Mahalanobis distances, and Fisher
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Criterion are used. As stated, in this chapter two-sample change point statistics are

implemented for different combinations of damage features and regression models.

6.6. Results

As shown in figure 6.2, the damage case in question for this study includes
damage at a section on the right side column; therefore, the results should detect
damage at or near this location. Three sensor clusters on the left, center, and right
portions of the frame are used for damage detection. It should be noted that the data
measured with sensors L1, C3, C5, and C9 were excluded from the damage detection
process, as the preliminary inspection of the measured signals revealed faulty behavior
of these sensors. Considering there are five or six sensors in each sensor group, there
are many different combinations of sensors that can be paired in the different linear
regression models. Therefore, only sensors within the same cluster will be paired with
one another. In effect, for a sensor cluster consisting of six sensors, in cases where two
sensor nodes are paired with one another, 30 pairs can be made without pairing a
sensor with itself. This occurs in SVR and ARX linear models. However, based on the
CR model, 120 different combinations can be made. This section presents the results
of the damage detection techniques described in the previous sections using the

acceleration data collected from the scaled steel frame.

6.6.1. Single variate regression results

The coefficients made using SVR model are readily used in the NLRT and t-test.

Since the Angle Coefficients are found in reference to the first baseline run of the
146

www.manaraa.com



experiment, a possible damage point should be detected when both damage features
are split into two groups of 20 tests. Figure 6.3 shows the Likelihood Ratio (LR) and
absolute t-statistics of the Alpha-based and Angle Coefficients in this case. All these
plots show peaks on the split at run number 20 which implies the possible timing of
the damage. These peaks correspond to the maximum test statistics; since the t- or LR-
test statistics are sequentially created for every two partitions of the observations as a
means to signify the difference between two partitions, these statistics are maximized
when all the observations in each partition belong to one state (healthy or damaged) of
the system. For Alpha-based and Angle Coefficients extracted from SVR models, this

corresponds to splitting observations at run number 20.

The change detection threshold is also plotted for both tests in these plots. It is
seen that when run number at the split is 20, the extracted damage features from left
and right side of the frame cross the change threshold, and this identifies the
occurrence of damage at the 21 run of the experiment. The damage features extracted
from the left and right sensor clusters at this split are plotted in figure 6.4. As the
entire frame’s response is changing with the switch of the damaged section, it is
expected that the damage features on the left side also cross the change threshold.
However, the detected change at the right side of the frame is more pronounced than
the left side. This implies that with a sensor located at right or left side of the frame,
the occurrence of the damage is most likely successfully identified; however,
localizing the damage to a specific location on the frame requires denser

instrumentation.

147

www.manaraa.com



The average of the test statistics associated with each sensor location that indicates
a statistically significant change in the extracted damage features are used in order to
localize the identified damage. This quantity correlates the severity of the change in
the damage features with the sensor locations on the structure. Figure 6.5 shows these
localized damage indicators extracted from the SVR models. This figure shows that
based on the maximum averaged test statistics, damage is localized to R6. With this
measure, the actual location of the damage RS, has the second largest damage
indicator. Therefore, it can be concluded that this change detection method

successfully localizes the damage to its true locale.
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6.6.2. ARX model results

The regression coefficients of ARX models, with model order 4, are first
condensed into a scalar damage feature using Mahalanobis distance which is then used
in the developed damage detection methods. The model order selection in this

implementation is based on the AIC criteria described in Section 6.2.2 along with the
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fact that the first 10 test runs are assumed to be conducted on a known healthy
structural configuration, and thus are used as reference to calculate the Mahalanobis
distances. Therefore, Mahalanobis distances are calculated between coefficients from
the first 10 healthy state runs and the last 10 healthy state runs. This step creates a
baseline distance. Then, the first 10 healthy runs and the 20 damaged runs are used to
create a distance to compare to the reference. The distances calculated in the latter
coefficients should be bigger than the baseline condition at areas of damage. In effect,
a possible significant change is expected to happen when the run number at the split is
10. As the proposed Angle Coefficients are scalar quantities, no preprocessing is
required prior to the change point analysis, and therefore the timing of possible
damage is expected to be detected at the split with run number 20. Figure 6.6 shows
the test statistics of the features extracted from ARX models. This figure shows that
the damage features from the ARX model do identify the correct timing of damage.
The damage features at the identified change time are plotted in Figures 6.7 and
6.8. These figures show that, similar to the SVR results, at time of the damage (11%
run in case of Alpha-based coefficients, and 21% run based on Angle Coefficients),
several coefficients on the left and right side of the girder cross the change threshold.
The test statistics are then analyzed for their effectiveness in localizing the damage.
The results are displayed in Figure 6.9. This figure shows that the averaged test

statistics of the Mahalanobis distance locate the damage at R4, while such damage

indicators based on Angle Coefficients localize the damage to its true location at RS.
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6.6.3. Collinear regression results

Collinear Regression (CR) in this implementation involves three different
locations. In effect, the results may show a more localized detection of damage
because the coefficients themselves include a higher spatial distribution. It is still
expected that the coefficients with combinations of the locations on the right side

column will show more significant change than those extracted from the left side of
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the frame. The results for the Alpha-based and Angle Coefficients are shown in figure
6.10. These plots are initially analyzed for the timing of damage.

All plots show a peak when the vector of the coefficients is split at the 20" run of
testing. As these peaks occur above the change threshold with 95% confidence level, it
can be concluded that this is the correct time of the damaging event. The results can
then be analyzed for their effectiveness in localizing the damage to the right side
column of the frame. Figure 6.11 shows the localized damage indicators. This figure
shows that the Angle Coefficients generated from CR models find the true location of
the damage (RS5) using LR- or Student’s t-test, while the performance of the Alpha-
based Coefficients depends on the test statistics; location of the damage is pinpointed

to the location of sensor C6 when using t-test, and R6 using LR-test.
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6.6.4. AR model results

AR models are also tested in the developed damage detection strategies. The
Alpha-based and Angle Coefficients in this case are generated as for the ARX models.
These coefficients are different from those generated based on the ARX models, in

that the damage features extracted from the AR models represent one sensor node on
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the frame. Figure 6.12 summarizes the results of the two-sample change detection on
the extracted damage features from AR models. These figures show that for the AR
models, the peaks of the change point test statistics are not as distinct as in the
previous cases. While using the Mahalanobis distance, the timing of the damage is
detected correctly, the Angle Coefficients are not successful in detecting the time or
location of the damage with this model. The LR-test statistics are shown in Figure
6.13 for Alpha-based Coefficients when data is split at 10" run. This figure shows that
the extracted damage features are not successful in pinpointing the damage to its true
location. This is most likely due to the fact that the simulated damage in this
experiment (20% stiffness reduction in a 0.2 m long segment of one of the columns)
does not significantly change the natural vibration frequency of the frame as well as
the characteristic roots of the AR models extracted from the acceleration response of
the frame at different locations. Additionally, Yao and Pakzad (2012) showed that
estimates of such AR coefficients has low robustness to environmental factors and
measurement noise, and therefore to use the AR model for structural damage detection
purposes other damage features such as autocorrelation function of the AR residuals

and AR model spectrum are more promising.

161

www.manaraa.com



m
N w B (93}
o o o o

LR-statistics (D_«)

-
o

5 10 15 20 25
Run number at the spilit

(a)

8;
7.
3 6f
£
B &)
8
S 47
a
g 3
@
= o8
1t
h ."'" N
0 ; A
5 10 16 20 2
Run number at the split
(e)

N w B o
o o o o

LR-statistics (I')

-
o

. Damage features extracted from
RIGHT side of the frame (total 6 sensors)
Damage features extracted from '
LEFT side of the frame (total & sensors) |
95 % Confidence Threshold

o
—&

10 20 30

|t-statistics| ( )

Run number at the split
(b)
D features from
RIGHT side of the frame (6 sensors)
D from )

LEFT side of the frame (5 sensors)
[ ] 95 % Confidence Threshold

Run number at the split

(d)

Figure 6.12. Test statistics of the damage features extracted from the AR models: (a) LR-
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6.6.5. False detection check

Prior to concluding that the proposed damage detection methods are viable ways

of identifying the structural damage, their false detection quality should also be tested.
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For this purpose, these methods are iterated on a group of 40 runs consists of the first
20 tests on the healthy configuration of the frame combined with a random
permutation of these 20 runs. As all the tests are from the same structural condition, it
is expected that no damage is detected using the damage sensitive features in this case.
Figure 6.14 shows the LR- and t-statistics extracted from the coefficients of the SVR,
ARX, CR, and AR models for these 40 sets of data from the undamaged state, along
with the change detection threshold corresponding to 95% confidence level. This
figure shows that when all the observations belong to one state of system, no large and
distinct peaks are evident above the change threshold as in the previous cases.
However, it is also seen that some of the statistics do cross the change threshold. This
does not signify damage as it is consistence with average false detection of the
corresponding tests on observations from a normal distribution at 95% confidence

level.
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Figure 6.14: Test statistics of the damage features extracted from different regression models: (a)
AR model, LR-statistics, Alpha-based Coefficients; (b) SVR model, LR-statistics, Angle
Coefficients; (c) ARX model, absolute t-statistics, Alpha-based Coefficients; (d) CR model,
absolute t-statistics, Angle Coefficients

6.7. Summary and Conclusions

This study is concerned with the effectiveness of different damage features and
multivariate linear regression models used in data-driven structural damage
identification. For this purpose, a successive normalized likelihood ratio test and a

sequential two-sample t-test are adopted to test the change in two different damage
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sensitive features based on the regression coefficients of four different linear
regression models (SVR, CR, ARX, and AR models). This methodology is tested on a
scaled two-span frame in which damage is simulated by switching a segment of one of
the columns with a section with 20% less stiffness. It was observed that all of the
mathematical models were successful in identifying the occurrence of the damage,
except when the Angle Coefficients from AR models were tested. The location of
damage was then identified based on the test statistics from SVR, CR, and ARX
models. These results are summarized in Table 6.2. This table shows that the Angle
Coefficients have a better performance in localizing the damage, as in all cases the
simulated structural damage is localized to its true or neighboring sensor node. Alpha-
based Coefficients, however, perform less accurate and robust in damage localization;
their damage localization performance depends on the underlying mathematical model
and the change point test statistics. It is also observed that the ARX model has the
most accurate localization estimate regardless of the test statistics used, and its

performance is improved in combination with the proposed Angle Coefficients.

It should be noted that in any damage detection experimental testbed similar to the
one used here, assembly procedure for simulation of damage could change the system
and generate misleading results in the change point analysis. To address this issue,
note the following: (1) through the presented methods, damage is successfully
localized to its true neighborhood, (2) damage detection methods in this chapter are all
model-free techniques. Model-based damage detection methods with appropriate

parameterization could have benefits of detecting such changes, and (3) the
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consistency of the assembly of the testbed was examined in preliminary experiments,
by repeating the experiments in healthy/damaged states. A procedure for the sequence

of testbed assembly is established to ensure that the results remain consistent.

Table 6.2. Summary of the damage identification of the steel girder

Identified damage location*

Change point
method t-test LR-test
Alpha- Angle Alpha- Angle
Damage features based Cocfficients based Cocfficients
Coefficients ’ Coefficients i
SVR model R6 R6 R6 R6
ARX model R4 RS R4 RS
CR model C6 RS R6 R5

* True damage location is RS

Since the false detection quality of the proposed methods were also verified using
data sets from the healthy condition of the structure, it can be concluded that these
methods are viable techniques to identify and locate damage in structural systems. It
was shown that incorporating multiple mathematical models, damage sensitive
features and change detection tests improve the overall performance of these model-
free structural damage detection when impact loading is used to dynamically excite
the steel frame. This shows potential application of such methodologies in automated
damage localization during events like earthquake; however, in order to extend the
application of these methods, their performance should also be evaluated using
ambient vibration as excitation in future research. In addition, in this single damage
scenario, it was observed that when damage features are developed based on relative
change in the acceleration response at nodes inside each sensor cluster, occurrence of

damage could be statistically identified even using the data from a sensor that is
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located relatively far from the damaged member. This implies that these methods are

most likely capable of detecting the timing of damage in multiple damage scenarios as

well.
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Chapter 7

Structural damage identification
with a
compressed sensing approach

This chapter extends the data-driven damage detection methods presented in the
previous chapter into a damage localization technique with a compressed sensing
(CS) approach. The motivation is to identify the least amount of data that is required
to process in order to successfully localize structural damage in its early stage. This
is important because the volume of monitoring data is growing drastically with
improvement in sensing technology. Therefore, while installing high resolution
sensing networks has become affordable, the requirements for data storage and
processing the monitoring data could become a bottleneck for the previously damage
detection algorithms which work on the basis of analyzing the entire collected data
set in order to make a decision (Matarazzo et al. 2015). This has become a
concerning issue in the SHM field in the recent years, and research is ongoing to find
efficient ways of processing, transmitting, and storing the monitoring data while
maintaining comparable accuracy in the results. Some of the works in this area have
investigated this issue in SHM applications for the purpose of modal identification,

while others tackle the problem of compressed data-driven damage detection. Bao et
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al. (2013) proposed and validated a CS-based approach for the acceleration time
series recovery and modal parameters identification on data collected from the
Jinzhou West Bridge and the Structural Health Monitoring System on the National
Aquatics Center in Beijing. The results indicated that recovery accuracy depends on
the sparsity characteristic of the collected signals in some orthonormal basis.
O’Connor et al. (2014) proposed a CS strategy for sub-Nyquist random sampling and
off-line target signal reconstruction to perform modal identification on a three span
highway bridge instrumented with wireless sensor network. Haile and Ghoshal
(2012) presented a CS technique for reconstruction of full-field strain data from
discrete strain samples in a numerical experiment. Mascarefias et al. (2013)
implemented a prototype compressed sensor that can collect compressed coefficients
and send it to off-board processer for reconstruction, also investigated the suitability
of the CS coefficients for damage detection. Zhou et al. (2013) proposed a structural
damage identification method based on the sub-structure-based sensitivity analysis
and the sparse constraints regularization. Finally, Yao et al. (2015) proposed a
compressive sensing damage detection method based on spatial correlation of

random samples and Ant Colony optimization.

In this chapter a CS-based damage localization algorithm is proposed which
performs based on three components of random sensor location sampling, change
point analysis, and recursive Bayesian probability estimation. The damage detection
starts with selecting a subset from entire monitoring network. Data from these

sensors are processed for feature extraction and change point analysis. When the
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change point analysis signifies a potential candidate for damage location,
neighborhood of the suspect location is investigated further in a local sampling step.
A recursive Bayesian estimation procedure is also adopted in order to iteratively
update the probability of damage location as data from more sensors are considered
for processing. This procedure is terminated when damage is localized with a certain
probability. The following sections of this chapter describe this damage localization
methodology in details. Performance of this technique is also shown using a FE

model of a steel gusset plate.

7.1. Compressed damage detection and localization: single damage

scenario

The data-driven damage detection methodology proposed here consists of
iterative global and local sampling steps from a dense sensor network. With a
uniform prior probability for the location of damage, the global sampling step starts
by taking samples uniformly from the entire sensor network. This iterative global
sampling ensures high reliability in finding a proper start point to establish an initial
local search boundary. Data from the sampled sensors are processed for feature
extraction and statistical testing based on change detection methods. As test statistics
from sampled sensor locations cross the specified change threshold, likelihood of the
damage location is calculated, and is used to obtain the posterior probability of the
damage location. The local sampling steps start with taking samples inside a smaller
window centered on the location with maximum posterior probability. The steps of

local sampling, feature extraction, change point analysis, likelihood and posterior
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probability estimation are repeated until damage is localized beyond a pre-specified
probability threshold. The local sampling window is also updated if a new sampled
point reveals the highest change statistics over the current search window. Figure 7.1
shows the details of the proposed method in a flowchart. As this figure indicates, in
the case of multiple damage detection, first number of desired local search
boundaries are assumed (Nw). Then kmean clustering algorithm (Lloyd 1982) is
used to divide the change points into Ny classes to set Ny, search boundaries where a

separate local search begins using a moving window as explained before.

Assuming uniform probability for damage location,
randomly sample a number of sensors from the entire grid

Is the number of global samples |
less than the pre-set threshold? ) Continue

to
local search...

Figure 7.1. (a) Flowchart of the proposed compressed damage localization algorithm
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Figure 7.1. (b) Flowchart of the proposed compressed damage localization algorithm
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7.2. Application of the Proposed Compressed Damage Detection

Algorithm on a Steel Gusset Plate Simulation

Accuracy and robustness of the proposed compressive damage diagnosis
framework is evaluated through FE simulations of damage and undamaged structural
connections used to generate strain data. Figure 7.2 shows the simulated two-way
gusset plate connection used for numerical validation in this research. The assembled
connection is 52 inches long and undergoes a 50 kips (222.4 kN) axial tensile load. It
should be noted that the gusset plate is designed to withstand up to 100 kips (444.8
kN) of axial tensile force. The simulated damage is a one inch long cut in the free
section of the gusset plate. Figure 7.3 and 7.4 show the FEM of the simulated single
and multiple damage cases. Strain filed of the gusset plate before and after damage is
used to simulate the test data. In both damaged and undamaged cases, Gaussian noise
is added to the data to create a more realistic monitoring scenario and generate 30

sets of strain data for each structure’s health condition.
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Figure 7.2. Simulated gusset plate connection under axial loading: undamaged state
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Figure 7.3. Simulated gusset plate connection under axial loading: single damage scenario
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Figure 7.4. Simulated gusset plate connection under axial loading: multiple damage scenario

7.3. Damage Features Extraction

The damage features used in this study is a dimensionless scalar feature based on
the relative change in the strain at neighboring grid nodes. Since direction of the
potential cracking is not known in real damage cases, this feature establishes a
relationship between strain at every node of the FE mesh and those from points close
to that node in the two orthogonal directions. Eq. (7.1) shows this damage feature. In

this equation ¢&;jdenotes strain at a node with coordinate (i,j).

(7.1)

When the gusset plate is intact, each term in Eq. (7.1) is close to unity, since there
is no abrupt change of strain between neighboring nodes in the middle section of the
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gusset plate. When a crack is formed; however, a drastic change in the vicinity of the
crack occurs in form of stress reduction along the cracked section and intensified
stress around the crack tips. With these changes, the damage features would deviate
from their counterparts extracted from the “healthy” state of the structure. In order to
statistically test the significance of change in these damage features, vectors of
features shown in Eq. (7.1) from damaged and undamaged FE models are tested to

find a statistically significant change in their means.
7.4. Change Point Analysis

In order to test the change in the damage sensitive features described before, two-
sample t-test is used here. This control statistics is based on the Student’s t-test and is
a common procedure for testing the significance of difference between the means of
two samples (Montgomery and Loftis 1987), and has been successfully adopted for
data-driven damage detection (Labuz et al. 2010, Shahidi et al. 2014). The statistics
of this test has N-2 degrees of freedom (N being the combined length of the two

sample vectors) and is given in Eq. (7.2):

A A

— X - X,
1=
S,/ n)+(1/ny)

(7.2)

where the variables )A(land )A(z are the means, n1 and nz are the sizes of the two
samples, and S, represents their pooled standard deviation. Upper and lower control
limits for this test are then calculated using the Student’s t inverse cumulative

distribution function at a certain confidence level and N-2 degrees of freedom. When a
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vector of test statistics crosses these control limits, significance of the change in the
statistics is inferred. As sensors are located closer to the location of damage, their

change statistics increase. This is the basis for finding the location of damage.

7.5. Recursive Bayesian Estimation

In the proposed algorithm, a Bayesian estimation framework (Thrun et al. 2005) is
adopted to find the probability of damage over the sensor network to terminate the
sampling process when enough evidence is available for damage localization. This
Bayesian estimation process starts with a uniform prior for the entire grid of the FE
mesh under investigation. A bivariate Gaussian model is then utilized to find the
likelihood of each damage location hypothesis with respect to the new detected
change point. Eq. (7.3) shows the formulation of this bivariate Gaussian model,

where Dy shows the coordinate of the k'™ detected change point (i.e. D, =[xd yd], )

and H,  represents the hypothesis that damage is located at the coordinate (x,y).

P B {2/ 3 N £

—=—=exp( ) 7.3
Jen’[E 2 73

L(H,,

Eq. (7.4) shows the k™ iteration in the Bayesian estimation process.

Pr,(H, )L(H,,
ZZPrk(HW)L(Hw
x oy

D)
D) (7.4)

Pok(Hx,y) =
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In this equation Prx and Pox respectively indicate prior and posterior probability of
damage for the k' iteration. As stated before, when k equals one, a uniform prior is
used as there is no knowledge about the location of damage prior to observing a

significant change in the sampled sensors’ data. When k exceeds one, posterior

probability estimated in the previous step (i.e. Po,_,(H, ,)) is recursively used as the

prior probability of the damage location.

7.6. Results

This section presents the results of the proposed damage detection method
applied on the data simulated with the FEM of the Gusset plate shown before. Figure
7.5 shows the complete feature domain for the single damage scenario when simulated
noise has a small amplitude; at each node standard deviation of the noise signal is 1%
of strain value. In the probability estimation step, for the likelihood function, standard
deviation of 3 for detection in x and y direction with zero correlation is assumed. The
damage detection is terminated when with 90% probability damage is localized to four
sensor locations, which in effect would be the smallest block size for the simulated
sensor network. Figure 7.6 and 7.7 shows the results of the single damage localization
algorithm when noise level is 1% and 10% respectively. Figure 7.8 compares the
entire feature domain with the compressed features when noise level is 10% and a
compression ratio of 90.9% is obtained. Figure 7.9 and 7.10 shows the results of

multiple damage detection scenario with 5% noise level, compression ratio in this
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case is 86.3%. It should be noted that in all these cases, the global sampling starts with

sampling 4% out of the entire feature domain.

Since the global sampling step establishes the local sampling boundary, it is
important to investigate the effect of the ratio of global sampling on the damage
localization results. The damage detection is repeated in several cases where global
sampling ratio is varying from 2% to 20%. In order to consider the variation in the
measurement noise, 50 different noise simulations is performed for each case. Table
7.1 and 7.2 shows the results of damage detection for single and multiple damage
scenarios with different global sampling ratio. It is observed that with 4% global
sampling, single damage localization would be successful with high reliability (98%).
However, in the case of multiple damage detection, it would be better to start with
higher global sampling ratio to have about 90% reliability for correct damage

detection.

Finally, the robustness of the proposed methodology to the measurement noise
is investigated by considering different noise amplitudes. For each noise level, 50
sets of simulation are performed and single damage detection procedure is repeated.
Table 7.3 summarizes the results of these simulations in terms of successful
detection and compression ratio. This table shows that as noise level is increasing,
the successful detection performance is deteriorating; however, in the successful

cases the compression ratio is still very high (more than 85%).
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Figure 7. 6. CS damage detection results: single damage scenario, 1% noise
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Table 7. 1. Comparison of the performance of CS damage detection with different global
sampling: single damage scenario, 5% noise

global sample (%) 2 4 10 20
successful detection (%) 94 98 100 100
average compession ratio (%) 92.6 91.0 85.6 76.7

Table 7. 2. Comparison of the performance of CS damage detection with different global
sampling: Multiple damage scenario, 5% noise

global sample (%) 2 -4 10 20
successful detection (%) 40 78 88 92
average compession ratio (%) 87.3 85.6 80.6 72.2

Table 7. 3. Comparison of the performance of CS damage detection with different noise level:
Single damage scenario, 4% global sampling

noise level (%) 1 5 10 15
successful detection (%) 100 98 84 68
average compession ratio (%) 94.1 91.0 88.2 85.5

7.3. Summary and Conclusions

This chapter presents a methodology for compressed damage diagnosis. The main
motivation for developing such damage detection methods is to improve the
scalability of damage diagnosis frameworks. With rapid advancement in SHM
hardware over recent decades, dense contact and non-contact sensor networks are
readily used in the monitoring projects, and thus measurements with high resolution
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in time and space are obtained. While higher resolution measurement techniques
could be beneficial in accurate structural damage detection, it is important to
improve the scalability of damage detection algorithms for processing the SHM BIG
DATA. The proposed algorithm in this chapter aims to present a method that
accurately localize damage in the structure, while a very small subset of sensor nodes
are used for processing. The method works on the basis of change point analysis and
recursive Bayesian probability estimation. This algorithm is applied for damage
detection in a simulated gusset plate under axial loading. A single and a multiple
damage scenario is considered by introducing one-inch long cuts in the gusset plate.
Thirty sets of noisy strain field are generated from undamaged and damaged states of
the structure. The effect of global sampling on the damage detection performance is
investigated. The multiple damage scenario is seen to be more sensitive to the global
sampling rate. The success rate in this case is more than 75%, when damage
detection starts with only 4% of the entire data. Different noise amplitudes are
considered to investigate the robustness of the proposed methodology to the
measurement noise. For each noise level, 50 sets of simulation were performed and
damage detection procedure is repeated. The results show that with processing less
than 15% of the monitoring data, this procedure is successful in single damage

localization for low and moderate noise levels.
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Chapter 8

Contributions and Future Directions

8.1. Contributions

This dissertation presents model-based and model-free algorithms for processing
SHM data. The research presented in this dissertation can be divided into four parts:
(1) developing a non-linear FEM updating algorithm and validation of its performance
in terms of accuracy, computational cost, and robustness, (2) damage assessment and
fragility analysis of the Washington Monument following 2011 Virginia earthquake
through modal identification and model calibration, (3) developing and comparing
data-driven damage detection methods, and (4) a compressed sensing damage
detection algorithm is proposed and applied to localize cracks in a steel gusset plate
connection. This section presents a summary of contributions of different parts of the

research presented in this dissertation.

The contribution of the first part of this research is to develop a surrogate-based
non-linear FEM updating algorithm (called GRSMU), through which appropriate RS
models are created to replace the non-linear FEM in the minimization problem of
model calibration. Performance of GRSMU in terms of accuracy and computational

cost was compared with sensitivity-based model calibration; the most common and
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generalized model calibration technique used for this purpose. This comparison
shows that GRSMU is computationally cheaper, while having comparable accuracy.
The research findings were published in Volume 140 of the Journal of Structural

Engineering-ASCE (Shahidi and Pakzad 2014a).

Another contribution of this part is in developing analytical and numerical
procedure to investigate the robustness of GRSMU results with respect to the standard
deviation of the measurement noise. Several parametric studies were performed on
single- and multi-dof structures, and it was observed that for a zero-mean noise
structure, the estimation error is fairly insensitive to low and medium measurement
noise level. In addition, robustness of the GRSMU results regarding frequency content
of the input load was also explored. This was accomplished through assuming a
sinusoidal input load on the structure, and change the frequency of this excitation with
respect to the fundamental vibration frequency of the structure in several scenarios. It
was observed that when the vibration frequency of the system is outside of the
frequency bandwidth of the load, the results show the least sensitivity to measurement
noise level, selected time window for optimization, and location of the true model
parameters in the RS domain. Similar observations were made when GRSMU was
used to estimate modeling parameters of an steel frame with bilinear material model
under seismic loading. The research findings were published in Volume 75 of the

Engineering Structures Journal (Shahidi and Pakzad 2014b).

Contribution of the second part of this dissertation is to present the role that SHM

algorithms plays in improving the credibility of damage assessment and seismic
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fragility analysis. In this part of the research, a finite element model of the Washington
Monument is developed and updated based on the dynamic characteristics of the
structure identified through ambient vibration measurement and modal identification
after the earthquake. The calibrated model is used to study the potential causes of the
observed damage to the Washington Monument during 2011 Virginia earthquake. This
FEM is then modified to limit the tensile capacity of the grout material and previously
cracked sections to investigate the initiation and propagation of cracking in several
futuristic earthquake scenarios. The non-linear FEM is subjected to two ensembles of
site-compatible ground motions representing different seismic hazard levels for the
Washington Monument, and occurrence probability of several structural and non-
structural damage states is investigated. Summary of our findings in the vibration
testing and damage assessment phase of the project were published by Geological
Society of America in a special paper volume on “The 2011 Mineral, Virginia,
Earthquake, and Its Significance for Seismic Hazards in Eastern North America” (
Shahidi et al. 2015a). Results of the second phase of our research in seismic fragility
assessment of the Washington Monument was submitted to Earthquake Spectra

Journal and is currently under revision.

In the last part of this research, data-driven damage detection methods are
presented and effectiveness of combination of different regression models, damage
features, and test statistics are compared. In effect, a successive normalized
likelihood ratio test and a sequential two-sample t-test are adopted to test the change

in the damage sensitive features extracted from different linear regression models.
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This methodology is tested on a scaled two-span frame instrumented with a dense
sensor of accelerometers where damage is simulated by switching a segment of one
of the columns with a section with 20% less stiffness. It was observed that all of the
presented damage detection methods are successful in identifying the occurrence of
the damage; however, with different localization accuracy. The contribution of this
part is in data-driven damage detection is in establishing and comparing the
effectiveness of different regression models, damage indicators, and two-sample test
methodologies for SHM applications. In addition, a damage sensitive feature based
on the change in the angle of regression coefficient vectors is introduced which is
applicable to both single and multivariate regression models. The application of the
collinear regression model and sequential two-sample statistical tests for damage
detection and localization is also introduced. The paper presenting our contributions
in this part was published in the Volume 11 of the journal of Structure and
Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and

Performance.

Finally, in the last part of this research a compressed sensing data-driven damage
detection algorithm is presented. This algorithm works based on strategic sampling of
sensors from a dense sensor network, change point analysis, and recursive Bayesian
probability estimation. The contribution of this part is in developing a novel scalable
single and multiple damage detection strategy to localize the structural damage

accurately, while only a small portion of data is processed.
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8.2. Future directions

While this dissertation contributes different approaches for vibration-based SHM
research, as a result a wide range of research topics are also opened. This section
describes possible future directions for continuation of the research presented in this
dissertation. The following presents these future research ideas classified based on the

related problem.

8.2.1. RS-based non-linear FEM updating

While this dissertation presents several examples of implementing the GRSMU
algorithm for input-output non-linear model updating as well as output-only linear
model calibration, one future direction for extending the application of this algorithm
is to develop output-only GRSMU for non-linear model updating. This can be
accomplished by including an input excitation estimation step or alternatively by
performing the model calibration on short-term Fourier transforms of the time domain
data. In addition, another future research direction is to implement GRSMU for model
updating of structures with different sources of non-linearity than what assumed in this
dissertation. Moreover, given availability of long-term monitoring data, the overall
GRSMU framework can be extended to develop RS functions of structural parameters
as well as environmental factors such as temperature. This would be beneficial to

establish an efficient on-line damage detection algorithm.
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8.2.2. Data-driven Damage detection

This dissertation presents a comprehensive comparison of the performance of several
data-driven damage localization techniques on a scaled steel frame under impact
loading. Implementation of these damage detection frameworks on in-service real
world structures by measuring their ambient vibration would provide a more realistic
comparison of the performance of these techniques. In effect, this can be readily
accomplished using the graphical toolsuit developed in Lehigh University’s SHM

research group. This toolsuite is available for download at http://dit.atlss.lehigh.edu

(Shahidi et al, 2015b).

8.2.3. Damage detection with a compressed sensing approach

Compressed sensing and its application in SHM is relatively a new research topic.
Therefore, several future directions are possible to take for further research in this
area. One direction for future research is to study the effects of sensor network
resolution on the accuracy of the proposed CS algorithm. Moreover, performance of
other damage sensitive features, global or local sampling techniques, and likelihood
models can be further studied. Finally, one could develop CS-based SHM algorithms

with compression in terms of data transmission as well as sensor location selection.
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